JOURNAL OF FISHERIES OF CHINA

文章编号: 1000-0615(2001)06-0559-05

虎纹蛙病毒主要衣壳蛋白基因的克隆及其序列

苗素英,何建国,张利红,曾 慷,王晓红,张 旻,江静波 (中山大学生命科学学院,广东广州 510275)

摘要: 从新分离感染虎纹蛙的病毒培养细胞中提取病毒 DNA 作模板, 用分别对应于蛙病毒 3 型(FV3)主要衣壳蛋白(Major Capsid Protein, MCP) 基因读码框两侧的寡核苷酸片段作引物进行 PCR 扩增, 得到预期大小基因片段, 进一步将此基因片段插入到 pGEM-T 载体中, 进行全长片段的序列测定和分析。结果表明, 编码虎纹蛙病毒的 MCP 基因的读码框核苷酸数为 1 392bp,编码 463 个氨基酸; 基因的核苷酸序列与其他脊椎动物虹彩病毒的 MCP 基因序列比较结果显示, 该病毒与蛙病毒属的 FV3 的同源性(98%) 明显高于囊肿病毒属的 FLDV-1(52%),并且与虹彩病毒科其他成员的 MCP 基因序列均有所不同,说明该病毒株是虹彩病毒科蛙病毒属的新成员。

关键词: 虎纹蛙; 虹彩病毒; 衣壳蛋白基因; 克隆; 病毒分类

中图分类号: S917; Q132.1 文献标识码: A

Cloning, sequence analysis of the major capsid protein gene of newly isolated iridovirus from *Rana tigrina*

MIAO Su-ying, HE Jian-guo, ZHANG Li-hong, ZENG Kang WANG Xiao-hong, ZHANG Min, JIANG Jing-bo (School of Life Science, Zhongshan University, Guangzhou 510275, China)

Abstract: The complete gene of major capsid protein (MCP) of the recently isolated iridovirus from *Rana tigrina* was amplificated using the primers corresponding to the two sides of the frog virus 3 (FV3) MCP gene and was cloned into the pGEM-T easy vector. The MCP gene of the virus was 1 392 bp in size and had much higher identity to FV3 (98%), the type species of the genus *Ranavirus*, than to lympocystis disease virus (52%), the type species of the genus *Lymphocystwirus*. Comparison of the MCP sequence here with this of other vertebrate iridoviruses showed that the iridovirus examined here was a new member of the genus *Ranavirus*.

Key words: Rana tigrina; iridovirus; capsid protein gene; clone; virus taxonomy

近十几年来, 虹彩病毒已被认为是水产养殖上的一类重要病原, 可引起贝类、鱼类、两栖类和爬行类的疾病, 危害较大 $^{[1]}$ 。最近我们从人工养殖的泰国虎纹蛙($Rana\ iigrina\ Cantor$)中分离到一株可引起皮肤溃疡病的病毒, 从病毒形态特点来看, 初步认为是属于虹彩病毒科的种类。为了更进一步明确其分类地位, 我们根据脊椎动物虹彩病毒主要衣壳蛋白($Major\ Capsid\ Protein,\ MCP$)基因的两端保守区序列和对应于蛙病毒 3 型(FV3)主要衣壳蛋白基因读码框两侧的寡核苷酸片段设计引物, 分别扩增到虎纹蛙病毒 MCP 基因 3 端 585bp、5 端 536bp 和全长片段, 并进行了克隆、测序及其序列比较和分析。

收稿日期: 2001-01-15

基金项目: 广东省自然科学基金项目资助(990255)

1 材料和方法

1.1 病毒和细胞

实验用虎纹蛙病毒来自于培养细胞,用 M-199 培养基上长成单层的鲤表皮瘤细胞系(EPC) 细胞接种病毒, 72 h 后收集细胞培养液,冻融, 1000 r• min^{-1} 15min 离心, 取病毒上清液。

1.2 病毒核酸的提取

病毒核酸的提取按文献^[2]进行,上清液直接用酚、氯仿抽提,乙醇沉淀,溶于双蒸水用作 PCR 反应模板。同时从未感染的 EPC 细胞提取 DNA 作阴性对照。

1.3 PCR 扩增反应

1.3.1 引物

MCP 5' 端 PCR 扩增用寡核苷酸正向引物 P₁ (^{5'} GACTTGGCCACTTATGAC^{3'}) 和反向引物 (P₂ ^{5'} CCGCTGTCTCTGGAGAAGAA^{3'}) 是根据 FV3^[3]和比目鱼病毒(LDCV – 1) ^[4]的 MCP 基因保守区设计的。

MCP 基因 3 端引物 P_3 和 P_4 、编码区两侧引物 P_5 、 P_6 序列参见 Hyatt 等 P_5 。 所有引物由上海生工公司合成。

1.3.2 PCR 反应

50以体系中含 10mmol•L⁻¹ Tris-HCl, pH9. 0, 10mmol•L⁻¹KCl, 10mmol•L⁻¹(NH₄) 2SO₄, 2mmol•L⁻¹MgSO₄, 1% Triton X – 100, 200以mol•L⁻¹dNTP, 引物 MPF₁和 MPR₂ 各 0. 75以mol, *Taq* Plus DNA 聚合酶 2. 5U 和病毒 DNA 模板适量,设空白对照和阴性对照。扩增反应在 PTC-100TM 热循环仪上进行,循环参数为 94℃ 1min, 55℃ 1min, 72℃ 1min 20s, 35个循环后,在 72℃中延伸 10min。PCR 相关试剂均购自上海生工生物工程公司。

1.4 PCR 产物纯化和克降

PCR 产物经 1% 琼脂糖 凝胶电泳 鉴定, 采用 PCR 产物纯化试剂盒(上海生工) 纯化, 与 pGEM-T (Promega, USA) 载体连接, 连接物转化 DH5 α 感受态细胞, 用氨苄青霉素(Amp) 抗性筛选阳性克隆, 并进行酶切鉴定。

1.5 DNA 序列测定和分析

克隆片段采用 T_7 和 SP_6 通用引物进行双向测序, 再用 MPR 引物从中间作反向测序, MPR 引物序列为: $^{5'}$ ACGACGCGGAGTGACGCAGGTGTAA $^{3'}$,对应于 FV3 MCP 基因的 969-945nt。测序由上海生工生物工程公司完成。核苷酸序列分析采用的是 Blast 和 Genedao 软件。本实验所用的其他虹彩病毒 MCP 参比序列取自 GenBank。

2 结果与分析

2.1 PCR 扩增产物及其克隆

用引物 P_1 和 P_2 扩增到虎纹蛙病毒的 5' 端预期的 510bp 片段; 引物 P_3 和 P_4 扩增到 3' 端 586bp 片段。扩增片段经纯化后,直接测出序列,测得虎纹蛙病毒 MCP 基因两端的核苷酸序列与 FV3 的 MCP 基因同源性极高,于是尝试用 FV3 MCP 编码区外序列 P_5 和 P_6 作引物进行扩增,扩增产物电泳结果可见一明显条带,分子量在 P_6 1. P_6 5kb 左右(图 P_6 1),与 FV3 已知序列两引物间 P_6 1 484bp 大小接近,初步定性。空白和阴性对照无相应扩增产物。PCR 产物纯化、连接和转化后的 P_6 6mp 阳性克隆经电泳鉴定,结果与预期一致(图 P_6 2)。

60

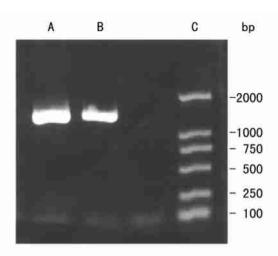
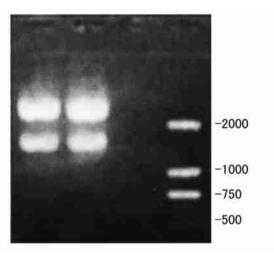



图 1 PCR 产物电泳图 Fig. 1 Photograph of the agarose gel electrophoresis of PCR products A, B. 虎纹蛙病毒 DNA 的 PCR 扩增产物, C.DNA 分子量标准

酶切鉴定结果 Fig. 2 The restriction pattern of recombinant plasmid with EcoR iv

PCR 产物重组质粒 EcoR iv

A, B. 虎纹蛙病毒, C. DNA 分子量标准

2. 2. 病毒 MCP 基因序列

克隆片段用三种引物经两次重复测 序, 拼接成 MCP 基因的完整序列(图 3)。 从虎纹蛙中分离的病毒核酸的 MCP 基因 编码区大小为 1392bp, 与 FV3 相同。其中 G+ C 含量较高, 为 59%。

病毒MCP基因分析

利用 Blast 软件和 GenBank 数据库对 虎纹蛙病毒的 MCP 基因进行分析比较,该 病毒完整 MCP 基因的核苷酸序列与 FV3 和 LDCV - 1 的同源性分别为 98% 和 52%; MCP 5' 端 536bp 和 3' 端 585bp 片段 与 FV3、RGV、Terrapene carolina 病毒 (Terrapene carolina ranavirus), Testudo hermanni 病毒 (Testudo hermanni ranavirus) 的同源性相同,均为98%,与虹鳟病毒 (Oncorhynchus mykiss ranavirus)的同源性为 96%, 与大口鲈病毒(Largemouth bass ranavirus) 的同源性为 81%; 3' 端 585bp 片 段与裂唇鱼病毒(Doctorfish iridoviruses, DFV)、传染性造血组织坏死病毒(Epizootic haematopoetic necrosis virus, EHNV)和孔雀 鱼病毒(Guppyfish iridovirus, GV6)的同源 性均为97%; MCP 基因的核苷酸和氨基酸 序列与所有其他虹彩病毒基因均有所不

1 <u>caccgtgtatcttataataaaaaggaaatg</u>tcttctgtaactggttcaggtatcacaagt M S S V T G S G I T S ggtttcatcgacttggccacttatgacaatcttgagagagcaatgtacgggggttcggacGFIDLATYDNLERAMYGGSD 120 21 gccaccacgtactttgtcaaggagcactaccccgtggggtggttcaccaagctgccgtct 32 A T T Y F V K E H Y P V G W F T K I P S 180 51 240 241 41 aggtcggggattacatcctcaacgcctggttggtactcaagacccctgaggtcgagctc 72 R S G D Y I L N A W L V L K T P E V E L 300 301 c1 ctggccgcaaaccagctgggagaaaatggcaccatcaggtggacaaagaaccccatgcac 360 111 aacattgtggagagcgtcacctctcattcaacgacatcaggcccagtcctttaacacg 131 gcatacctggacgcctggagtgagtacaccatgccagaggccaagcgcataggctactat A Y L D A W S E Y T M P E A K R I G Y Y 480 151 aacatgataggcaacaccagcgatctcatcaaccccgccccggccacaggccaggacggaN M I G N T S D L I N P A P A T G Q D G 540 171 gccagggtcctccggccaagaacctggttcttcccctcccattcttctccagagac
A R V L P A K N L V L P L P F F F S R D 191 $\frac{agcgg}{S}actggccctgccagtcgtctccctcccctacaacgagatcaggataacagtcaag}{S} \frac{agcgg}{G} \frac{L}{L} \frac{A}{L} \frac{P}{V} \frac{V}{V} \frac{S}{S} \frac{L}{L} \frac{P}{V} \frac{V}{N} \frac{E}{E} \frac{I}{R} \frac{I}{I} \frac{T}{V} \frac{V}{K}$ 211 720ctgagggccatccaggacctcctgatcctccagcacaacaccacaggggcaatcagcccc L R A I Q D L L I L Q H N T T G A I S P 780 ategtggcctccgacctcgcgggaggtctccccgacaccgtcgaggccaacgtctacatg I V A S D L A G G L P D T V E A N V Y M 251 840 271 gttgtggagcaggtgcaggtcgccccagtccacatggtcaaccccaggaacgcggccacc V V E Q V Q V A P V H M V N P R N A A T 900 901 ttccacaccgacatgcggttctcaca<u>cgcagtcaaggccttgatgt</u>ttatggtgcagaac F H T D M R F S H A V K A L M F M V Q N 960 292 311 gtcacacaccttccgtcggctccaattacacctgcgtcactcccgtcgtgggagccggc 331 1021 aacacggtcctggagccagccttggcggtggatcccgtcaagagcgccagcctggtgtac 332 N T V L E P A L A V D P V K S A S L V Y 1080 .081 gaaaacaccacaaggctccccgacatgggagtcgagtactactccgctggtggagccctgg 1140 352 E N T T R L P D M G V E Y Y S L V E P W 371 1081 tactatgccacctccatcccagtcagcaccgggcaccacctctactcttatgccctcage 1200 Y Y A T S I P V S T G H H L Y S Y A L S 391 1201 atgcaggaccccacccatccggatcaaccaattacggcagactgaccaacgccagcctt 392 M O D P H P S G S T N Y G R L T N A S L 1260 1261 aacgtcacctgtccgctgaggccaccacggccgccgcaggaggcggaggtgacaactct 412 N V T L S Å E Å T T Å Å Å G G G G D N S 1320 .321 gggtacaccaccgcccaaaagtacgcctcatcgttctggccatcaaccacaacattatc 1380 432 G Y T T A Q K Y A L I V L A I N H N I I 451 1381 cgcatcatgaacggctcgatgggattcccaatcttgtaaagagtatttttcagcgcaaag 1440 452 R I M N G S M G F P I L * 463 $tetttteegteatgggteeteeatgatggaaataaaacatgaagtgtee\underline{gtttgetgeaa}$ 1500 1501 aacgggtettt

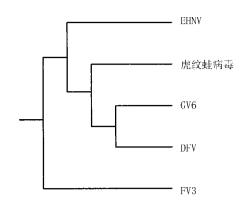

图 3 虎纹蛙病毒衣壳蛋白基因的核甘酸及相应的氨基酸序列 注: 划线部分为引物区

Fig. 3 The DNA nucleotide and deduced amino acid sequence of the MCP gene

同。用 Genedao 软件对 DFV、GV 6、EHNV、FV 3 和虎 纹蛙病毒根据 MCP 基因 3' 端 585bp 片段作出的进 化树见图 4。

讨论

虹彩病毒(Iridoviridae) 是一类二十面体的胞浆 内DNA 病毒,下分五个病毒属,即宿主为无脊椎动 物的虹彩病毒属(Iridovirus)、绿虹彩病毒属 (Chloririd wirus)和宿主为脊椎动物的蛙病毒属 (Ranavirus)、淋巴囊肿病毒属(Lymphocystivirus)、金鱼 病毒型样病毒属(Goldfish virus 1-like viruses)[6]。该 科病毒的一个主要共同特点是它们均具有一大小约 Fig. 4 The evolution of the viruses isolated from Rana tigrina 50 kDa, 占病毒总蛋白量 45% 的主要衣壳蛋白(major capsid protein, MCP)^[7,8]。迄今,已测知7种虹彩病

虎纹蛙病毒的演化位置

EHNV 为传染性造血组织坏死病毒, GV6 为孔雀鱼病毒, DFV 为裂唇鱼病毒, FV3为 蛙病毒3型。

毒 MCP 基因的完整序列 $^{[4,5,9-12]}$ 。通过对几十种脊椎动物和无脊椎动物的虹彩病毒 MCP 基因的全部 和部分序列的分析, 结果显示, 该基因既具有高度的保守性, 又具有足够的差异性, 是进行虹彩病毒分类 和演化研究的良好的分子标记[5, 12, 13]。

FV3和 LDCV-1 分别是蛙病毒属和淋巴囊肿病毒属的代表种, 本研究无论从 MCP 基因的 5' 端还是 3' 端来看, 虎纹蛙病毒与 FV3 的核苷酸序列同源性均大大高于 LDCV- 1, 且 3' 端与其他脊椎动物虹彩 病毒比较,核苷酸序列均有所不同,因此,该新分离的虎纹蛙病毒应是虹彩病毒科蛙病毒属的一新成员。 从 Hyatt 等^[5] 根据 MCP 基因的 3° 端 585bp 片段所作的进化树来看, 寄生于鱼类和两栖类的虹彩病毒有 明显的分支。本文研究的病毒是从两栖类(虎纹蛙)中分离得到的,虽然与两栖类病毒 FV3 的同源性 (98%)稍高于鱼类病毒 GV6, DFV 和 EHNV(97%),但由于一些主要核苷酸位点的不同,其演化位置却 更接近于鱼类虹彩病毒。为方便起见, 暂将其命名为 Rana tigrina ranavirus, 简称 RTV。

Hyatt 等^[5] 曾对能引起皮肤溃疡病的十九种脊椎动物虹彩病毒(包括鱼类和两栖类) MCP 基因的 3' 端 585bp 片段进行过比较, 结果表明 DFV 和 GV 6 与 FV 3 的同源性在 90% 以上. 而 Mao 等 [14] 对 GV 6 和 DFV 的 5 端的研究结果, DFV 和 GV6 与 FV3 的同源性为 77%, 这可能与病毒混杂有关, 也可能是由于 DFV 和 GV6 MCP 基因在 5' 端和 3' 端的演化速率不同。本研究通过与 FV3 等四种脊椎动物虹彩病毒 5' 端和 3' 端 MCP 基因的比较. 表明虎纹蚌病毒的 MCP 基因两端的同源性相同. 说明该基因的不同区 域、其演化速率相同。

虎纹蛙是从泰国引进,为我国海南和广东的蛙类主要养殖品种。Kauchanckhan 等[15]曾报道过泰国 虎纹蛙养殖中的皮肤溃疡病病毒,从疾病症状、细胞培养特征和宿主地理位置看,很可能与本文所研究 的病毒为同一病原。

RTV MCP 基因的扩增、克隆、测序和分析,不仅确定了新分离病毒分类地位,也为今后更好了解该 蛋白的免疫原性、侵染和复制机理,并为进而研制基因工程疫苗奠定基础。

参考文献:

- [1] 殷 震,刘景华. 动物病毒学(第二版)[M]. 北京: 科学出版社, 1997. 1095-1103.
- [2] Oshima S, Hata J, Segawa C, et al. A method for direct DNA amplification of uncharacterized DNA viruses and for development of a viral polymerase chain reaction assay: application to the red sea bream indovirus[J]. Anal Biochem, 1996, 242: 15-19.
- [3] Mao J H, Tham T N, Gentry G A, et al. Cloning, sequence analysis, and expression of the major capsid protein of the Iridovirus frog virus 3[J]. Virol, 1996, 216: 431–436.
- [4] Schnitzler P, Darai G. Identification of the gene encoding the major capsid proten of fish lymphocystis disease virus[J]. J Gen Virol, 1993, 74: 2141- 50.
- [5] Hyatt A D, Gould A R, Znpanovic Z, et al. Comparative studies of piscine and amphibian iridoviruses [J]. Arch Virol, 2000, 145: 301-331.
- [6] Murphy F A, Fauquet C M, Bishop D H L, et al. Virus taxonomy, 6th report of the International Committee on Taxonomy of Viruses [J]. Arch Virol, 1995, 10(Suppl): 208-239.
- [7] Willis D B, Goorha R, Miles M, et al. Macromolecular synthesis in cells infected by frog virus 3. X. transcriptional and post-transcriptional regulation of virus gene expression [J]. J Virol , 1977, 24: 324-326.
- [8] Black P.N., Blair C.D., Butcher A, et al. Biochemistry and ultrastructure of iridescent virus type 29[J]. J Invertebr Pathol, 1981, 38:12-21.
- [9] Cameron I R. Identification and characterization of the gene encoding the major structural protein of the insect iridescent virus type 22[J]. Virol, 1990, 178: 35-42.
- [10] Stohwasser R, Raab K, Schnitzler P, et al. Identification of the gene encoding the major capsid protein of insect iridescent virus type 6 by polymerase chain reaction [J]. J Gen Virol, 1993, 74: 873 – 879.
- [11] Tajbakhsh S, Lee P E, Wastson D C, et al. Molecular cloning, characterisation, and expression of the *Tipula* iridescent virus capsid gene[J].
 J Virol, 1990, 64: 125–136.
- [12] Webby R, Kalmakoff J. Sequence comparison of the major capsid protein gene from 18 diverse iridoviruses [J]. Arch Virol, 1998, 143: 1949–1966.
- [13] Tidona C A, Schnitzler P, Kehm R, et al. Is the major capsid protein of iridoviruses a suitable target for the study of viral evolution [J]? Virus Genes, 1998, 16: 59-66.
- [14] Mao J H, Hedrick R P, Chinchar V G. Molecular characterization, sequence analysis, and taxonomic position of newly isolated fish iridoviruses [J]. Virol, 1997, 229: 212-220.
- [15] Kanchanakhan S, Saduakdee U M, Chinabut S, et al. Isolation and characterisation of a new virus from ulcerative disease tiger frog, Rana tigrina Cantor [A]. Proceed of the 37th Kasetsart university annual conference [C]. Text & Journal publication company, 1999. 133.