团头鲂耐低氧新品系雌核发育群体遗传结构的微卫星分析
CSTR:
作者:
作者单位:

上海海洋大学农业部淡水水产种质资源重点实验室,上海海洋大学农业部淡水水产种质资源重点实验室,上海海洋大学农业部淡水水产种质资源重点实验室,上海海洋大学农业部淡水水产种质资源重点实验室,上海海洋大学农业部淡水水产种质资源重点实验室,上海海洋大学农业部淡水水产种质资源重点实验室

基金项目:

国家科技支撑计划(2012BAD26B00);国家自然科学基金(31272633,31201760);上海高校知识服务平台(ZF1206)


Analysis of genetic structure of gynogenetic population in new strain of hypoxia-tolerant Megalobrama amblycephala using microsatellite markers
Author:
Affiliation:

Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries,Shanghai Ocean University,Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries,Shanghai Ocean University,Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries,Shanghai Ocean University,Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries,Shanghai Ocean University,Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries,Shanghai Ocean University,Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries,Shanghai Ocean University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了指导团头鲂耐低氧群体的后续选育工作开展,利用筛选出的20对微卫星引物,比较分析了团头鲂耐低氧群体(TN)及其减数分裂(TNM)、有丝分裂(TNDH)雌核发育后代群体的遗传结构;结果显示,团头鲂TN、TNM、TNDH及团头鲂“浦江1号”(TPJ1)对照的平均等位基因数(Na)分别为3.90、3.55、3.45、4.25,平均观测杂合度(Ho)分别为0.7853、0.3934、0.2768、0.8075,平均期望杂合度(He)分别为0.6491、0.5563、0.4870、0.6855,平均多态信息含量(PIC)分别为0.5695、0.4796、0.4181、0.6105,TPJ1对照群体的遗传多样性最高,TN群体较TPJ1群体的遗传多样性有所降低,但不存在显著差异,仍保持了较高的遗传杂合度,而2个雌核发育群体(TNM和TNDH)的遗传多样性显著低于TPJ1和TN群体,TNDH群体的遗传多样性显著低于TNM群体。Hardy-Weinberg平衡遗传偏离指数也表明团头鲂TPJ1和TN群体出现杂合子过剩现象,而TNM、TNDH雌核发育群体则出现了杂合子缺失现象,纯合子比例高。聚类分析表明,TPJ1和TN群体聚类成一个分支,而TNM、TNDH雌核发育群体聚类成另一分支,产生了一定程度的遗传分化。在TN群体中实施雌核发育可加速遗传物质的纯合,可用于团头鲂进一步耐低氧性状基因的纯化。

    Abstract:

    To guide the subsequent breeding of hypoxia-tolerant population of Megalobrama amblycephala; genetic structures of hypoxia-tolerant (TN), meiotic gynogenesis (TNM), mitotic gynogenesis populations (TNDH) of M. amblycephala were analyzed using twenty microsatellite markers in this study. The mean value of number of alleles (Na) of M. amblycephala TN, TNM, TNDH and the control TPJ1 was 3.90, 3.55, 3.45 and 2.56, respectively. The mean value of observed heterozygosity (Ho) was 0.7853, 0.3934, 0.2768 and 0.8075, respectively. The mean value of expected heterozygosity (He) was 0.6491, 0.5563, 0.4870 and 0.6855, respectively. And the average value of polymorphism information content (PIC) was 0.5695, 0.4796, 0.4181 and 0.6105, respectively. It demonstrated that the genetic diversity of TPJ1 was the highest, and TN population had lower genetic diversity, but there is no significant difference and there was the high genetic heterozygosity. The genetic diversity of TNDH population was significantly lower than TNM population, and the genetic diversity of the gynogenetic (TNM and TNDH) was significantly lower than TPJ1 and TN populations. The mean Hardy-Weinberg index of the TPJ1 and TN had heterozygote excess and the gynogenetic populations (TNM and TNDH) showed heterozygote deficit. Using unweighted pair-group method with arithmetic means method (UPGMA) based on their genetic distances, TPJ1 population and TN population were grouped in one cluster, while TNM population and TNDH population were classified into another cluster, indicating a genetic differentiation between the two clusters. Our results show that the hypoxia-tolerant group in M. amblycephala (TN) in gynogenesis can accelerate homozygosity of genetic material and will have further purification of M. amblycephala hypoxia-tolerant genes.

    参考文献
    [1] 柯鸿文. 团头鲂的人工繁殖与饲养试验[J]. 水生生物学集刊, 1965, 5(2):282-283. Ke H W. An excellent frest-water food fish Megalobrama amblycephala and its propagating and culturing[J]. Acta Hydrobiologica Sinica, 1965, 5(2):282-283(in Chinese).
    [2] 李思发. 鱼类良种介绍团头鲂浦江1号[J]. 中国水产, 2001(11):52. Li S F. Introduction of improved varieties of fish No. 1 Pujiang Megalobrama amblycephala[J]. China Fisheries, 2001(11):52(in Chinese).
    [3] 唐首杰. 团头鲂野生群体、驯养群体、遗传改良群体的遗传变异[D]. 上海海洋大学, 2009. Tang S J.Genetic variation in wild, domesticated and genetically improved populations of blunt snout bream (Megalobrama amblycephala)[D]. Shanghai:Shanghai Ocean University, 2009(in Chinese).
    [4] Komen H, Thorgaard G H. Androgenesis, gynogenesis and the production of clones in fishes:a review[J]. Aquaculture, 2007, 269(1-4):150-173.
    [5] 邹曙明, 李思发, 蔡完其, 等. 团头鲂良种雌核发育群体的建立及其遗传变异[J]. 水产学报, 2001, 25(4):311-316. Zou S M, Li S F, Cai W Q, et al. Establishing gynogenetic groups of genetic improved Megalobrama amblycephala and its genetic analysis[J]. Journal of Fisheries of China, 2001, 25(4):311-316(in Chinese).
    [6] 唐首杰, 李思发, 蔡完其. 团头鲂连续三代减数雌核发育群体遗传变异的微卫星分析[J]淡水渔业, 2014, 44(2):3-8. Tang S J, Li S F, Cai W Q. Analysis of genetic homozygosity and diversity of three successive generations of meio-gynogenetic population in Megalobrama amblycephala using microsatellite markers[J]. Freshwater Fisheries, 2014, 44(2):3-8(in Chinese).
    [7] 张新辉, 高泽霞, 罗伟, 等. 雌核发育团头鲂的形态和遗传特征分析[J]. 水生生物学报, 2015, 39(1):126-132. Zhang X H, Gao Z X, Luo W, et al. Studies on morphological characteristics and genetic analysis of the gynogenesis blunt snout bream (Megalobrama amblycephala)[J]. Acta Hydrobiologica Sinica, 2015, 39(1):126-132(in Chinese).
    [8] Gao Z X, Luo W, Liu H, et al. Transcriptome analysis and SSR/SNP markers information of the blunt snout bream (Megalobrama amblycephala)[J]. PLoS One, 2012, 7(8):e42637.
    [9] Li W T, Liao X L, Yu X M, et al. Isolation and characterization of polymorphic microsatellite loci in Wuchang bream (Megalobrama amblycephala)[J]. Molecular Ecology Notes, 2007, 7(5):771-773.
    [10] Tang S J, Li S F, Cai W Q. Development of microsa-tellite markers for blunt snout bream Megalobrama amblycephala using 5'-anchored PCR[J]. Molecular Ecology Resources, 2009, 9(3):971-974.
    [11] 张倩倩, 陈杰, 蒋霞云, 等. 不同鳊鲂鱼类群体微卫星DNA指纹图谱的构建和遗传结构分析[J]. 水产学报, 2014, 38(1):15-22. Zhang Q Q, Chen J, Jiang X Y, et al. Establishment of DNA fingerprinting and analysis on genetic structure of different Parabramis and Megalobrama populations with microsatellite[J]. Journal of Fisheries of China, 2014, 38(1):15-22(in Chinese).
    [12] Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3):314-331.
    [13] 耿波, 孙效文, 梁利群, 等. 利用17个微卫星标记分析鳙鱼的遗传多样性[J]. 遗传, 2006, 28(6):683-688. Geng B, Sun X W, Liang L Q, et al. Microsatellite analysis of genetic diversity of Aristichthys nobilis in China[J]. Hereditas, 2006, 28(6):683-688(in Chinese).
    [14] 杨弘, 李大宇, 曹祥, 等. 微卫星标记分析罗非鱼群体的遗传潜力[J]. 遗传, 2011, 33(7):768-775. Yang H, Li D Y, Cao X, et al. Genetic potential analysis of six tilapia populations by microsatellite DNA markers[J]. Hereditas (Beijing), 2011, 33(7):768-775(in Chinese).
    [15] 刘海金, 刘永新, 王玉芬, 等. 牙鲆减数分裂与有丝分裂雌核发育的遗传差异[J]. 水产学报, 2010, 34(6):718-724. Liu H J, Liu Y X, Wang Y F, et al. Genetic difference between meiotic gynogenesis and mitotic gynogenesis in the Japanese flounder[J]. Journal of Fisheries of China, 2010, 34(6):718-724(in Chinese).
    [16] 徐营, 邵长伟, 邓寒, 等. 半滑舌鳎养殖群体和减数分裂雌核发育群体的微卫星标记遗传多样性分析[J]. 渔业科学进展, 2011, 32(4):14-19. Xu Y, Shao C W, Deng H, et al. Genetic analysis of cultured and gynogenetic stocks of half-smooth tongue sole Cynoglossus semilaevis by using SSR markers[J]. Progress in Fishery Sciences, 2011, 32(4):14-19(in Chinese).
    [17] 刘海金, 陆桂, 王晓梅, 等. 有丝分裂雌核发育牙鲆的微卫星鉴定[J]. 中国水产科学, 2010, 17(5):889-894. Liu H J, Lu G, Wang X M, et al. Identification of mitogynogenetic Japanese flounder (Paralichthys olivaceus) using microsatellite marker[J]. Journal of Fishery Sciences of China, 2010, 17(5):889-894(in Chinese).
    [18] 李鹏飞, 刘萍, 柳学周, 等. 漠斑牙鲆引进种群同工酶的遗传多态性分析[J]. 中国水产科学, 2006, 13(1):13-19. Li P F, Liu P, Liu X Z, et al. Isozyme polymorphism in paralichthys, Paralichthys lethostigma[J]. Journal of Fishery Sciences of China, 2006, 13(1):13-19(in Chinese).
    [19] 王蕾, 张立冬, 万玉美, 等. 牙鲆微卫星标记的筛选及群体遗传结构分析[J]. 遗传, 2010, 32(10):1057-1064. Wang L, Zhang L D, Wan Y M, et al. Isolation of microsatellite markers from Paralichthys olivaceus and its application in genetic structure analysis[J]. Hereditas (Beijing), 2010, 32(10):1057-1064(in Chinese).
    [20] Antoro S, Na-Nakorn U, Koedprang W. Study of genetic diversity of orange-spotted grouper, Epinephelus coioides, from Thailand and Indonesia using microsatellite markers[J]. Marine Biotechnology, 2006, 8(1):17-26.
    [21] 邵长伟, 廖小林, 田永胜, 等. 牙鲆3个养殖群体遗传结构的微卫星分析[J]. 渔业科学进展, 2009, 30(1):41-46. Shao C W, Liao X L, Tian Y S, et al. Microsatellite marker analysis of genetic structures of three populations of cultured Japanese flounder Paralichthys olivaceus[J]. Progress in Fishery Sciences, 2009, 30(1):41-46(in Chinese).
    [22] 刘静霞, 周莉, 魏丽华, 等. 红白锦鲤人工雌核发育纯系的微卫星标记分析[J]. 水生生物学报, 2003, 27(6):557-562. Liu J X, Zhou L, Wei L H, et al. Microsatellite marker analysis on artificially gynogenetic pure line of red-white ornamental carp[J]. Acta Hydrobiologica Sinica, 2003, 27(6):557-562(in Chinese).
    [23] Zheng K, Lin K D, Liu Z H, et al. Comparative microsatellite analysis of grass carp genomes of two gynogenetic groups and the Xiangjiang River group[J]. Journal of Genetics and Genomics, 2007, 34(4):321-330.
    [24] 周裕华, 邹桂伟, 梁宏伟, 等. 人工雌核发育鲢近交F2微卫星DNA变异分析[J]. 淡水渔业, 2007, 37(4):30-33. Zhou Y H, Zou G W, Liang H W, et al. Variation in microsatellite DNA of inbreeding F2 progeny of artificial gynogenetic silver carp[J]. Freshwater Fisheries, 2007, 37(4):30-33(in Chinese).
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐湛宁,李福贵,郑国栋,陈杰,蒋霞云,邹曙明.团头鲂耐低氧新品系雌核发育群体遗传结构的微卫星分析[J].水产学报,2017,41(3):330~338

复制
分享
文章指标
  • 点击次数:2165
  • 下载次数: 2356
  • HTML阅读次数: 1053
  • 引用次数: 0
历史
  • 收稿日期:2016-04-25
  • 最后修改日期:2016-08-13
  • 录用日期:2016-11-15
  • 在线发布日期: 2017-03-17
文章二维码