莫荷罗非鱼“广福1号”与其亲本间DNA甲基化的差异分析
CSTR:
作者:
作者单位:

中国水产科学研究院珠江水产研究所,中国水产科学研究院珠江水产研究所

基金项目:

中国水产科学研究院基本科研业务费(2016HY-ZC0401);现代农业产业技术体系专项(CARS-46);国家科技支撑计划子课题(2012BAD26B03)


Analysis of DNA methylation difference between “Mohe” hybrid tilapia and its parents
Author:
Affiliation:

Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences,Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了探讨罗非鱼杂种优势形成过程中基因组DNA甲基化模式的变化,运用甲基化敏感扩增多态技术(methylation sensitive amplified polymorphism, MSAP)分析橙色莫桑比克罗非鱼、荷那龙罗非鱼及其杂交种莫荷罗非鱼“广福1号”的皮肤、肌肉和鳃等11种组织的DNA甲基化水平差异。采用16对引物进行选择性扩增,经聚丙烯酰胺凝胶电泳带型分析结果显示:莫荷罗非鱼“广福1号”及其亲本在不同组织间的甲基化水平存在组织特异性,相同组织不同亲、子代罗非鱼间的甲基化程度亦不同;橙色莫桑比克罗非鱼、荷那龙罗非鱼以及“广福1号”各组织平均总甲基化水平分别为32.21%、38.03%和29.77%,莫荷罗非鱼“广福1号”的甲基化水平低于双亲;与亲本相比,莫荷罗非鱼“广福1号”的甲基化模式除了大多数保持稳定遗传(A、B、C类型分别为19.67%、29.99%、25.42%)之外,24.92%胞嘧啶位点发生去甲基化和超甲基化,且去甲基化位点(E类型,15.73%)多于超甲基化位点(D类型,9.19%)。研究表明,莫荷罗非鱼“广福1号”基因组DNA的低甲基化特征和甲基化模式的重调可能与耐盐杂种优势有关。

    Abstract:

    DNA methylation difference of eleven tissues of Oreochromis mossambicus, Oreochromis hornorum and “ Mohe” hybrid tilapia (O. mossambicus♀×O. hornorum♂), such as skin, muscle and gill etc. was analyzed to explore the change of methylation pattern during the interspecific hybridization using methylation sensitive amplified polymorphism (MSAP). 16 pairs of primers were used to amplify selectively. The results of electrophoretic banding analysis showed that there were differences in the methylation levels among these different tissues of the same species and between the same tissues among “ Mohe” hybrid tilapia and its parents; the average methylation level of these tissues from O. mossambicus, O. hornorum and “ Mohe” hybrid progenies was 32.21%, 38.03% and 29.77%, respectively. The methylation level of hybrid progenies was lower than those of the parental progenies. Most of the methylation patterns of the hybrid progenies were similar to the parental progenies (A, B and C types, 19.67%, 29.99% and 25.42%), while 24.92% cytosine demethylation and hypermethylation were found in the genome of hybrid progenies and the number of demethylation sites (E type, 15.73%) was greater than that of hypermethylation sites (D type, 9.19%). These results suggested that the genomic DNA hypomethylation and the reshuffling of the DNA methylation pattern in the hybrid progenies might be associated with the heterosis. The present findings established epigenetic foundation to further reveal the heterosis mechanism of tilapia.

    参考文献
    [1] 李家乐, 李思发. 中国大陆尼罗罗非鱼引进及其研究进展[J]. 水产学报, 2001, 25(1): 90-95.
    Li J L, Li S F. Introduction and research advances of Oreochromis niloticus in China Mainland [J]. Journal of Fisheries of China, 2001, 25(1): 90-95(in Chinese).
    [2] 刘玉娇, 朱华平, 卢迈新, 等. 莫荷罗非鱼幼鱼耐盐性能的初步研究[J]. 淡水渔业, 2015, 45(1): 109-112.
    Liu Y J, Zhu H P, Lu M X, et al. Preliminary study on salinity tolerance of the juveniles of hybrid tilapia (Oreochromis mossambicus♀×O. hornurum♂) [J]. Freshwater Fisheries, 2015, 45(1): 109-112(in Chinese).
    [3] 杨淞, 汪开毓, 黄樟翰, 等. 两种罗非鱼主要生物学性状及杂交F1代生长性能的研究[J]. 四川农业大学学报, 2008, 26(1): 93-98.
    Yang S, Wang K Y, Huang Z H, et al. Studies on the Principal Biological Characteristics of Oreochromis hornorum, Oreochromis mossambicus and the Growth Performance of Hybrid F1 [J]. Journal of Sichuan Agricultural University, 2008, 26(1): 93-98(in Chinese).
    [4] Crow J F. Alternative hypotheses of hybrid vigor [J]. Genetics, 1948, 33(5): 477-487.
    [5] Jones D F. Dominance of linked factors as a means of accounting for heterosis [J]. Genetics, 1917, 2(5): 466-479.
    [6] East E M. Heterosis [J]. Genetics, 1936, 21(4): 375-397.
    [7] Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(17): 9226-9231.
    [8] Groszmann M, Greaves I K, Albertyn Z I, et al. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2617-2622.
    [9] Wolffe A P, Matzke M A. Epigenetics: Regulation through Repression [J]. Science, 1999, 286(5439): 481-486.
    [10] Zhang Y Q, Zhao M, Sawalha A H, et al. Impaired DNA methylation and its mechanisms in CD4+ T cells of systemic lupus erythematosus [J]. Journal of Autoimmunity, 2013, 41: 92-99.
    [11] Jones P A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond [J]. Nature Reviews Genetics, 2012, 13(7): 484-492.
    [12] Jablonka E, Goitein R, Marcus M, et al. DNA hypomethylation causes an increase in DNase-I sensitivity and an advance in the time of replication of the entire inactive X chromosome [J]. Chromosoma, 1985, 93(2): 152-156.
    [13] Constância M, Pickard B, Kelsey G, et al. Imprinting mechanisms [J]. Genome Research, 1998, 8(9): 881-900.
    [14] Razin A, Cedar H. DNA methylation and gene expression [J]. Microbiology Reviews, 1991, 55(3): 451-458.
    [15] Cheng X D, Blumenthal R M. Mammalian DNA methyltransferases: A structural perspective [J]. Structure, 2008, 16(3): 341-350.
    [16] Romagnoli S, Maddaloni M, Livini C, et al. Relationship between gene expression and hybrid vigor in primary root tips to young maize (Zea mays L.) plantlets [J]. Theoretical and Applied Genetics, 1990, 80(6): 769-775.
    [17] Cedar H. DNA methylation and gene activity [J]. Cell, 1988, 53(1): 3-4.
    [18] Xiong L Z, Xu C G, Maroof M A S, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique [J]. Molecular and General Genetics, 1999, 261(3): 439-446.
    [19] Fulneček J, Kovařík A. How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? [J]. BMC Genetics, 2014, 15(1): 2.
    [20] Li Y G, Guan Y Y, Li Q, et al. Analysis of DNA methylation in tissues and development stages of pearl oyster Pinctada fucata [J]. Genes & Genomics, 2014, 37(3): 263-270.
    [21] McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases [J]. Nucleic Acids Research, 1994, 22(17): 3640-3659.
    [22] Cervera M T, Ruiz-García L, Martínez-Zapater J. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers [J]. Molecular Genetics and Genomics, 2002, 268(4): 543-552.
    [23] Reyna-López G E, Simpsom J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms [J]. Molecular and General Genetics, 1997, 253(6): 703-710.
    [24] 徐青. 鸡DNA甲基化组织特异性及亲本与子代甲基化差异性研究[D]. 北京: 中国农业大学, 2006.Xu Q. Differences in DNA methylation among tissues and between parents and offspring in chicken[D]. Beijing: China Agricultural University, 2006 (in Chinese).
    [25] 龚治, 周世豪, 马华博, 等. 瓜实蝇DNA甲基化的MSAP体系建立与优化[J]. 热带农业科学, 2016, 36(5): 37-43.
    Gong Z, Zhou S H, Ma H B, et al. Establishment and optimization of MSAP analysis system for DNA methylation in Bactrocera cucurbitae [J]. Chinese Journal of Tropical Agriculture, 2016, 36(5): 37-43(in Chinese).
    [26] Jiang Q, Li Q, Yu H, et al. Inheritance and variation of genomic DNA methylation in diploid and triploid pacific oyster (Crassostrea gigas) [J]. Marine Biotechnology, 2016, 18(1): 124-132.
    [27] 朱华平, 卢迈新, 黄樟翰, 等. 低温对罗非鱼基因组DNA甲基化的影响[J]. 水产学报, 2013, 37(10): 1460-1467.
    Zhu H P, Lu M X, Huang Z H, et al. Effect of low temperature on genomic DNA methylation in Nile tilapia (Oreochromis niloticus) [J]. Journal of Fisheries of China, 2013, 37(10): 1460-1467(in Chinese).
    [28] 于涛, 杨爱国, 吴彪, 等. 栉孔扇贝、虾夷扇贝及其杂交子代的MSAP分析[J]. 水产学报, 2010, 34(9): 1335-1342.
    Yu T, Yang A G, Wu B, et al. Analysis of Chlamys farreri, Patinopecten yessoensis and their offspring using methylation-sensitive amplification polymorphism (MSAP) [J]. Journal of Fisheries of China, 2010, 34(9): 1335-1342(in Chinese).
    [29] 左之良, 谭杰, 吴彪, 等. 普通刺参(Apostichopus japonicus)和白刺参不同组织基因组DNA的MSAP研究[J]. 渔业科学进展, 2016, 37(3): 93-100.
    Zuo Z L, Tan J, Wu B, et al. MSAP analysis of genomic DNA in the Tissues of Apostichopus japonicus and White A. japonicus [J]. Progress in Fishery Sciences, 2016, 37(3): 93-100(in Chinese).
    [30] 唐韶青, 张沅, 徐青, 等. 不同动物部分组织基因组甲基化程度的差异分析[J]. 农业生物技术学报, 2006, 14(4): 507-510.
    Tang S Q, Zhang Y, Xu Q, et al. Analysis of methylation level of genome in various tissues of different animal species [J]. Journal of Agricultural Biotechnology, 2006, 14(4): 507-510(in Chinese).
    [31] 曹哲明, 丁炜东, 俞菊华, 等. 草鱼全同胞鱼苗不同个体甲基化位点的差异[J]. 动物学报, 2007, 53(6): 1083-1088.
    Cao Z M, Ding W D, Yu J H, et al. Differences in methylated loci among different grass carp individuals from one pair of parents [J]. Acta Zoologica Sinica, 2007, 53(6): 1083-1088(in Chinese).
    [32] 杜盈, 何玉英, 李健, 等. 野生和" 黄海1号”中国明对虾不同组织基因组DNA的MSAP分析[J]. 中国水产科学, 2013, 20(3): 536-543.
    Du Y, He Y Y, Li J, et al. MSAP analysis of genomic DNA in the tissues of wild and " Huanghai No.1” Fenneropenaeus chinensis [J]. Journal of Fishery Sciences of China, 2013, 20(3): 536-543(in Chinese).
    [33] Koroma A P, Jones R, Michalak P. Snapshot of DNA methylation changes associated with hybridization in Xenopus [J]. Physiological Genomics, 2011, 43(22): 1276-1280.
    [34] Tsaftaris A S, Kafka M. Mechanisms of heterosis in crop plants [J]. Journal of Crop Production, 1997, 1(1): 95-111.
    [35] 万亚琴. DNA甲基化与肉牛杂种优势关系的初步研究[D]. 重庆: 西南大学, 2008.Wan Y Q. Study on the relationship between DNA methylation and heterosis in beef cattle[D]. Chongqing: Southwest University, 2008 (in Chinese).
    [36] Li A, Song W Q, Chen C B, et al. DNA methylation status is associated with the formation of heterosis in Larix kaempferi intraspecific hybrids [J]. Molecular Breeding, 2013, 31(2): 463-475.
    [37] Kawanabe T, Ishikura S, Miyaji N, et al. Role of DNA methylation in hybrid vigor in Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): E6704-E6711.
    [38] 彭海, 江光怀, 张静, 等. 中国杂交籼稻DNA甲基化多样性与遗传稳定性[J]. 中国科学: 生命科学, 2013, 56(12): 1097-1106.
    Peng H, Jiang G H, Zhang J, et al. DNA methylation polymorphism and stability in Chinese indica hybrid rice [J]. Science China Life Sciences, 2013, 56(12): 1097-1106.
    [39] 刘玉姣. 橙色莫桑比克罗非鱼、荷那龙罗非鱼及其正反交子代耐盐相关基因的研究[D]. 上海: 上海海洋大学, 2014.Liu Y J. A study on salt tolerance related genes of Oreochromis mossambicus, O. hornorum and their hybrids[D]. Shanghai: Shanghai Ocean University, 2014 (in Chinese).
    [40] 李茜茜. 罗非鱼耐盐碱相关基因AQP1mTOR克隆和表达特征分析[D]. 上海: 上海海洋大学, 2016.Li Q Q. Cloning and expression characterization analysis of AQP1 and mTOR genes related to salt-alkaline tolerance in tilapia[D]. Shanghai: Shanghai Ocean University, 2016 (in Chinese).
    [41] 李爱, 刘超, 韩春乐, 等. 落叶松优势杂交子代与亲本间基因组DNA甲基化变异研究[J]. 南开大学学报(自然科学版), 2012, 45(5): 65-71.
    Li A, Liu C, Han C L, et al. Variation in cytosine methylation patterns between reciprocal hybrids and their parental line in Larix [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2012, 45(5): 65-71(in Chinese).
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

尚慧文,刘志刚,朱华平,高风英,可小丽,卢迈新.莫荷罗非鱼“广福1号”与其亲本间DNA甲基化的差异分析[J].水产学报,2017,41(11):1699~1709

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-10-30
  • 最后修改日期:2017-03-21
  • 录用日期:2017-03-28
  • 在线发布日期: 2017-11-21
文章二维码