壳白长牡蛎基因型与环境互作(G×E)效应分析
CSTR:
作者:
作者单位:

中国海洋大学水产学院,中国海洋大学水产学院

基金项目:

山东省农业良种工程(2017LZGC009);青岛市产业培育计划项目(17-3-3-64-nsh);泰山学者种业计划专家项目


Genotype by environment (G×E) interaction for growth and shell color traits in the white-shell strain of Pacific oyster (Crassostrea gigas)
Author:
Affiliation:

Ocean University of China, Fisheries College,Ocean University of China, Fisheries College

Fund Project:

Taishan scholars seed industry experts project plan; Key research and development plan of Shandong Province (2016ZDJS06A06); Agricultural fine seed project of Shandong Province (2017LZGC009).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探索壳白长牡蛎品系的壳色性状和生长性状的基因型与环境互作(G×E)效应,利用巢氏设计构建全同胞家系,每个家系分成两组分别在乳山和荣成海域进行养殖。利用线性混合模型和REML法分析11月龄壳白长牡蛎生长性状和壳色性状的遗传力及G×E效应。采用最佳线性无偏预测法(BLUP法)估计壳高和L*两个性状的育种值,并通过加权获得综合育种值来筛选优良家系。结果显示,乳山组和荣成组的壳白长牡蛎生长和壳色性状的遗传力不同,分别为(0.14±0.08)~(0.62±0.18)和(0.01±0.03)~(0.78±0.19),可能存在尺度效应。以不同环境为固定效应,综合两个环境计算出的生长和壳色性状的遗传力为(0.02±0.02)~(0.51±0.09),然而由于部分全同胞家系缺失和模型不收敛的原因,估计模型中未包括母本/共同环境效应和显性效应,上述遗传力估计值偏高。本研究中生长和壳色性状在两个环境间的遗传相关为(-0.47±0.40)~(0.75±0.18),均小于0.8,表明壳白长牡蛎品系的生长和壳色性状都具有明显的重排效应,壳白长牡蛎品系其选育需要针对不同的养殖环境培育不同适应性的选育家系。综合育种值排名前20的个体其家系来源比例表明,家系G1和G21对于乳山海域表现出特殊的适应性,而家系G4、G22和G5对荣成海域环境具有特适性,家系G2则对两个环境具有普适性。研究为壳白长牡蛎品系的良种选育提供了重要的参考依据。

    Abstract:

    The purpose of the present study is to reveal the genotype by environment (G×E) interactions on growth and shell color traits in the white-shell strain of Pacific oyster (Crassostrea gigas). The specimens of the white shell strain of C. gigas under six-generation of selection as parents were used to construct full-sib families following the method of nested design. All families were divided into two batches and grown in two environments, Rushan and Rongcheng. Linear mixed model and REML method based on an animal model were applied to estimate genetic parameters of white shell C. gigas at the age of 11 months. The best linear unbaised prediction (BLUP) method was used to estimate breeding values for shell height and L*, and superior families were selected based on comprehensive estimated breeding values. The results showed that heritabilities for growth and shell color traits in Rushan ranged from 0.14±0.08 to 0.62±0.18, while these were different in Rongcheng, varying from 0.01±0.03 to 0.78±0.19, which indicated that G×E interactions might be present as scale effects. After integrating the data in two different environments, heritabilities for growth and shell color traits ranged from 0.02±0.02 to 0.51±0.09. However, the estimates of heritabilities might be over-estimated because maternal/common environmental effects and dominance effects were included in the estimation model due to absence of some families and convergence problem. Genetic correlations for all growth and shell color traits between two environments, ranging from -0.47±0.40 to 0.75±0.18, were less than 0.8. This suggested that G×E interactions in the form of re-ranking of families across environments was apparent. It will be necessary to select lines that are suited to particular sites. The top 20 offspring in the rank of comprehensive estimated breeding values derived from different families in two different environments, indicating that the different families performed differently across the different rearing sites. The families G1 and G21 performed better in Rushan area, while the G4, G22 and G5 were most excellent families in Rongcheng area, and familiy G2 had high adaptability to both sites. The information obtained in this study will benefit genetic improvement of the white shell strain of C. gigas.

    参考文献
    [1] 丛日浩, 李琪, 葛建龙, 等. 长牡蛎4种壳色家系子代的表型性状比较[J]. 中国水产科学, 2014, 21(3):494-502 Cong R H, Li Q, Ge J L, et al. Comparison of phenotypic traits of four shell color families of the Pacific oyster (Crassostrea gigas)[J]. Journal of Fishery Sciences of China, 2014, 21(3):494-502(in Chinese)
    [2] Evans S, Camara M D, Langdon C J. Heritability of shell pigmentation in the Pacific oyster, Crassostrea gigas[J]. Aquaculture, 2009, 286(3-4):211-216
    [3] Mas-Muñoz J, Blonk R, Schrama J W, et al. Genotype by environment interaction for growth of sole (Solea solea) reared in an intensive aquaculture system and in a semi-natural environment[J]. Aquaculture, 2013, 410-411:230-235
    [4] 吴曼, 刘宝锁, 黄桂菊, 等. 合浦珠母贝不同生长阶段的基因型与环境互作效应[J]. 中国水产科学, 2015, 22(5):916-924 Wu M, Liu B S, Huang G J, et al. Genotype-by-environment interactions at different growth stages of the pearl oyster, Pinctada fucata[J]. Journal of Fishery Sciences of China, 2015, 22(5):916-924(in Chinese)
    [5] 马爱军, 王新安. 基于AMMI模型分析大菱鲆选育家系基因型与环境互作效应[J]. 水产学报, 2012, 36(11):1633-1639 Ma A J, Wang X A. Analysis of genotype-environmental interaction of turbot (Scophthalmus maximus) based on AMMI model[J]. Journal of Fisheries of China, 2012, 36(11):1633-1639(in Chinese)
    [6] Sae-Lim P, Kause A, Mulder H A, et al. Genotype-by-environment interaction of growth traits in rainbow trout (Oncorhynchus mykiss):A continental scale study[J]. Journal of Animal Science, 2013, 91(12):5572-5581
    [7] Tr?ng T Q, Mulder H A, van Arendonk J A M, et al. Heritability and genotype by environment interaction estimates for harvest weight, growth rate, and shape of Nile tilapia (Oreochromis niloticus) grown in river cage and VAC in Vietnam[J]. Aquaculture, 2013, 384-387:119-127
    [8] Evans S, Langdon C. Effects of genotype×environment interactions on the selection of broadly adapted Pacific oysters (Crassostrea gigas)[J]. Aquaculture, 2006, 261(2):522-534
    [9] Swan A A, Thompson P A, Ward R D. Genotype×environment interactions for weight in Pacific oysters (Crassostrea gigas) on five Australian farms[J]. Aquaculture, 2007, 265(1-4):91-101
    [10] 宋盛亮, 李琪, 孔令锋, 等. 长牡蛎生长性状的遗传效应及与环境互作分析[J]. 中国海洋大学学报, 2013, 43(10):41-47 Song S L, Li Q, Kong L F, et al. Genetic effect and interaction between genotype and environment of growth-related traits of Pacific oyster (Crassostrea gigas)[J]. Periodical of Ocean University of China, 2013, 43(10):41-47(in Chinese)
    [11] 栾生, 孔杰, 王清印. 水产动物育种值估计方法及其应用的研究进展[J]. 海洋水产研究, 2008, 29(3):101-107 Luan S, Kong J, Wang Q Y. Methods and application of aquatic animal breeding value estimation:A review[J]. Marine Fisheries Research, 2008, 29(3):101-107(in Chinese)
    [12] 李镕, 白俊杰, 李胜杰, 等. 大口黑鲈生长性状的遗传参数和育种值估计[J]. 中国水产科学, 2011, 18(4):766-773 Li R, Bai J J, Li S J, et al. Estimation of parameters and breeding values for growth traits of largemouth bass[J]. Journal of Fishery Sciences of China, 2011, 18(4):766-773(in Chinese)
    [13] Gall G A E, Bakar Y. Application of mixed-model techniques to fish breed improvement:Analysis of breeding-value selection to increase 98-day body weight in tilapia[J]. Aquaculture, 2002, 212(1-4):93-113
    [14] Zhang T S, Kong J, Luan S, et al. Estimation of genetic parameters and breeding values in shrimp Fenneropenaeus chinensis using the REML/BLUP procedure[J]. Acta Oceanologica Sinica, 2011, 30(1):78-86
    [15] Comstock R E, Robinson H F. Estimation of average dominance of genes[M]//Gowen J W. Heterosis. Ames:Iowa State College Press, 1952:494-519.
    [16] 王庆志, 李琪, 刘士凯, 等. 长牡蛎幼体生长性状的遗传力及其相关性分析[J]. 中国水产科学, 2009, 16(5):736-743 Wang Q Z, Li Q, Liu S K, et al. Estimates of heritabilities and genetic correlations for growth in Crassostrea gigas larvae[J]. Journal of Fishery Sciences of China, 2009, 16(5):736-743(in Chinese)
    [17] 陈辰. 乳山海域长牡蛎养殖环境与养殖容量研究[D]. 青岛:中国海洋大学, 2012:13-20. Chen C. Studies on environmental conditions and carrying capacity of Pacific oyster farming sites in Rushan[D]. Qingdao:Ocean University of China, 2012:13-20(in Chinese).
    [18] 孙宝楠, 杨永增, 滕涌, 等. 乳山湾邻近海域波浪特征要素规律研究[J]. 海洋科学进展, 2014, 32(4):459-466 Sun B N, Yang Y Z, Teng Y, et al. Study on wave characteristic parameters in the coastal area of Rushan Bay[J]. Advances in Marine Science, 2014, 32(4):459-466(in Chinese)
    [19] 宫立新. 山东半岛东部海滩侵蚀现状与保护研究[D]. 青岛:中国海洋大学, 2014:12-19. Gong L X. Erosion situation and protection of beach in eastern part of Shandong Peninsula[D]. Qingdao:Ocean University of China, 2014:12-19(in Chinese).
    [20] 张朝晖. 桑沟湾海洋生态系统服务价值评估[D]. 青岛:中国海洋大学, 2007:52-90. Zhang C H. The valuation of marine ecosystem services in Sanggou Bay[D]. Qingdao:Ocean University of China, 2007:52-90(in Chinese).
    [21] 王庆志, 李琪, 刘士凯, 等. 长牡蛎不同地理群体选育系数量性状的比较[J]. 中国海洋大学学报, 2011, 41(7-8):36-41 Wang Q Z, Li Q, Liu S K, et al. Comparison of quantitative traits among the breeding lines of different geographic populations of Crassostrea gigas[J]. Periodical of Ocean University of China, 2011, 41(7-8):36-41(in Chinese)
    [22] Brake J, Evans F, Langdon C. Is beauty in the eye of the beholder? Development of a simple method to describe desirable shell shape for the Pacific oyster industry[J]. Journal of Shellfish Research, 2003, 22(3):767-772
    [23] Mendoza F, Dejmek P, Aguilera J M. Calibrated color measurements of agricultural foods using image analysis[J]. Postharvest Biology and Technology, 2006, 41(3):285-295
    [24] Yam K L, Papadakis S E. A simple digital imaging method for measuring and analyzing color of food surfaces[J]. Journal of Food Engineering, 2004, 61(1):137-142
    [25] Segnini S, Dejmek P, Öste R. A low cost video technique for colour measurement of potato chips[J]. LWT-Food Science and Technology, 1999, 32(4):216-222
    [26] Gilmour A R, Gogel B, Cullis B, et al. ASReml User Guide Release 3.0[M]. Hemel Hempstead:VSN International Hemel Ltd, 2009.
    [27] Kolstad K, Thorland I, Refstie T, et al. Genetic variation and genotype by location interaction in body weight, spinal deformity and sexual maturity in Atlantic cod (Gadus morhua) reared at different locations off Norway[J]. Aquaculture, 2006, 259(1-4):66-73
    [28] Brown J R, Hartwick E B. Influences of temperature, salinity and available food upon suspended culture of the Pacific oyster, Crassostrea gigas:I. Absolute and allometric growth[J]. Aquaculture, 1988, 70(3):231-251
    [29] Dégremont L, Ernande B, Bédier E, et al. Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). I. Estimation of genetic parameters for survival and growth[J]. Aquaculture, 2007, 262(1):41-53
    [30] 李焕军, 徐涛, 王卫军, 等. 长牡蛎生长性状遗传力、遗传相关和表型相关分析[J]. 水产学报, 2017, 41(11):1680-1686 Li H J, Xu T, Wang W J, et al. Analysis of heritability, genetic correlation and phenotypic correlation for growth trait in Pacific oyster (Crassostrea gigas)[J]. Journal of Fisheries of China, 2017, 41(11):1680-1686(in Chinese)
    [31] Vandeputte M, Kocour M, Mauger S, et al. Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cyprinus carpio L.)[J]. Aquaculture, 2004, 235(1-4):223-236
    [32] 孔杰, 栾生, 罗坤, 等. 不同盐度下凡纳滨对虾生长和存活性状遗传评估[J]. 水产学报, 2017, 41(4):573-579 Kong J, Luan S, Luo K, et al. Genetic evaluation for body weight and survival of Pacific white shrimp (Litopenaeus vannamei) at different salinity[J]. Journal of Fisheries of China, 2017, 41(4):573-579(in Chinese)
    [33] Langdon C, Evans F, Jacobson D, et al. Yields of cultured Pacific oysters Crassostrea gigas Thunberg improved after one generation of selection[J]. Aquaculture, 2003, 220(1-4):227-244
    [34] Robertson A. The sampling variance of the genetic correlation coefficient[J]. Biometrics, 1959, 15(3):469-485
    [35] Falconer D S. Selection in different environments:Effects on environmental sensitivity (reaction norm) and on mean performance[J]. Genetics Research, 1990, 56(1):57-70
    [36] Eknath A E, Bentsen H B, Ponzoni R W, et al. Genetic improvement of farmed tilapias:Composition and genetic parameters of a synthetic base population of Oreochromis niloticus for selective breeding[J]. Aquaculture, 2007, 273(1):1-14
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邢德,李琪,张景晓.壳白长牡蛎基因型与环境互作(G×E)效应分析[J].水产学报,2019,43(2):474~482

复制
分享
文章指标
  • 点击次数:1904
  • 下载次数: 1695
  • HTML阅读次数: 1298
  • 引用次数: 0
历史
  • 收稿日期:2018-01-11
  • 最后修改日期:2018-05-19
  • 录用日期:2018-05-31
  • 在线发布日期: 2019-01-21
文章二维码