利用高通量测序开发的熊本牡蛎微卫星标记评价野生和养殖群体的遗传多样性及通用性
CSTR:
作者:
中图分类号:

Q348;S917.4

基金项目:

国家自然科学基金(31702340,31470570);重庆市科委自然科学基金(cstc2014jcyjA80013);重庆市教育委员会自然科学基金;(kj1400534);广东省自然科学基金(2017A030310442)


Evaluation of genetic diversity and versatility of wild and cultured populations based on high-throughput sequencing of Crassostrea sikamea microsatellite markers
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用高通量测序的方法,从熊本牡蛎基因组中开发了20对具有多态性的微卫星标记,通过微卫星标记位点比较了野生群体和养殖群体的遗传多样性。野生群体中,所有位点共扩增出330个等位基因,等位基因数(Na)范围为6~39,平均等位基因数为16.500 0;有效等位基因数(Ne)范围为1.352 9~33.361 7,平均值9.517 2;观测杂合度(Ho)范围为0.200 0~1.000 0,平均值0.671 5;期望杂合度(He)范围为0.265 6~0.987 7,平均值0.832 1;Shannon-Weiner指数(I)范围为0.648 3~3.585 8,平均值2.276 9;多态信息含量(PIC)范围为0.254 5~0.969 2,平均值0.803 5,共有16个位点符合Hardy-Weinberg平衡。养殖群体中,Na平均值为10.250 0,Ne平均值为5.843 4,Ho平均值为0.639 1,He平均值为0.763 6,I平均值为1.791 4,PIC平均值为0.720 7。结果显示,熊本牡蛎养殖群体的遗传多样性低于野生群体,但仍然维持在高度多态水平。研究表明,在熊本牡蛎人工繁育过程中,使用大数量的亲本进行繁育,可有效防止选育群体的遗传多样性降低,但人工选育对选育群体的遗传多样性也产生了一定的影响。另外,分析了这些引物在近缘种葡萄牙牡蛎、长牡蛎、香港牡蛎、有明牡蛎、僧帽牡蛎、咬齿牡蛎以及舌骨牡蛎中的通用性情况,发现XB1-6、XB1-39和XB1-45 3个位点在8个物种中均能扩增出目的条带,XB1-41仅能在熊本牡蛎中扩增出目的条带。

    Abstract:

    Using high-throughput sequencing,we characterized 20 pairs of polymorphic microsatellite primers from Crassostrea sikamea genome, and we examined the markers in a wild population. A total of 330 alleles were found in 25 microsatellites.The observed number of alleles (Na) ranged 6-39 in average of 16.500 0,and the effective number of alleles(Ne) ranged 1.352 9-33.361 7. The observed and expected heterozygosity values range 0.200 0-1.000 0 and 0.265 6-0.987 7, respectively.The Shannon Weiner index ranged 0.648 3-3.585 8 and Polymorphic information content (PIC) ranged 0.254 5-0.969 2. 16 microsatellite markers accord with Hardy-Weinberg equilibrium. Using these loci to analyze the genetic diversity of a cultured population, the average number of alleles was 10.25; the average number of Ne was 5.843 4. The observed heterozygosity (Ho) average was 0.639 1; the expected heterozygosity (He) average was 0.763 6; the Shannon-wiener index (I) average was 1.791 4; and the polymorphic information content (PIC) average was 0.720 7. It was found that the genetic diversity of C. sikamea cultured population was lower than that of the wild population, but it maintained a high-genetic diversity. The results of this study indicate that in the artificial breeding process of C. sikamea, the use of a large number of parents for breeding can effectively prevent the decline of genetic diversity of the cultured population, but artificial breeding also has a certain impact on the genetic diversity of the cultured population. The 20 loci were surveyed the cross-species proportions in C. angulate, C. gigas, C. hongkongensis, C. ariakensis, Saccostrea cucullata, Ostrea mordax and Hyotissa hyotis. Loci XB1-6, XB1-39, and XB1-45 can amplify the target band in 8 species, and the XB1-41 can only amplify the target band in C. sikamea.

    参考文献
    [1] 阙华勇, 刘晓, 王海艳, 等. 中国近海牡蛎系统分类研究的现状和对策[J]. 动物学杂志, 2003, 38(4):110-113 Que H Y, Liu X, Wang H Y, et al. Systematics of oysters along the coast of China:status and countermeasures[J]. Chinese Journal of Zoology, 2003, 38(4):110-113(in Chinese)
    [2] 杜玄, 郭希明, 钱鲁闽. 福建沿海巨蛎属牡蛎的主要种类及其分布[J]. 台湾海峡, 2009, 28(3):399-404 Du X, Guo X M, Qian L M. Distribution of Crassostrea oysters in coastal sea of Fujian[J]. Journal of Oceanography in Taiwan Strait, 2009, 28(3):399-404(in Chinese)
    [3] 王昌勃, 李琪, 孔令锋, 等. 熊本牡蛎单体苗种生产技术研究[J]. 中国海洋大学学报, 2016, 46(11):136-142, 186 Wang C B, Li Q, Kong L F, et al. Establishment of single oyster (Crassostrea sikamea) seeds[J]. Periodical of Ocean University of China, 2016, 46(11):136-142, 186(in Chinese)
    [4] 张跃环, 秦艳平, 张扬, 等. 熊本牡蛎多嵴和无嵴品系F1生长性状的群体选育[J]. 中国水产科学, 2016, 23(4):882-889 Zhang Y H, Qin Y P, Zhang Y, et al. Population selection for growth in two strains of the Kumamoto oyster Crassostrea sikamea[J]. Journal of Fishery Sciences of China, 2016, 23(4):882-889(in Chinese)
    [5] 吕晓燕. 熊本牡蛎人工繁育与长牡蛎单体苗种培育技术研究[D]. 青岛:中国海洋大学, 2013. Lü X Y. Studies on the techniques of artificial reproduction of the Crassostrea sikamae and cultivation of the cultchless spat of Crassostrea gigas[D]. Qingdao:Ocean University of China, 2013(in Chinese).
    [6] 于洋, 李伟, 王许波, 等. 熊本牡蛎室内人工育苗技术研究[J]. 海洋湖沼通报, 2016(5):104-108 Yu Y, Li W, Wang X B, et al. The study of Crassostrea sikamea indoor artificial seedling technique[J]. Transactions of Oceanology and Limnology, 2016(5):104-108(in Chinese)
    [7] Sekino M. In search of the Kumamoto oyster Crassostrea sikamea (Amemiya, 1928) based on molecular markers:is the natural resource at stake?[J]. Fisheries Science, 2009, 75(4):819-831
    [8] Wang H Y, Qian L M, Wang A M, et al. Occurrence and distribution of Crassostrea sikamea (Amemiya 1928) in China[J]. Journal of Shellfish Research, 2013, 32(2):439-446
    [9] 武祥伟, 张跃环, 肖述, 等. CB诱导熊本牡蛎三倍体及其存活率与倍化率的变化关系[J]. 水产学报, 2019, 43(4):1029-1037 Wu X W, Zhang Y H, Xiao S, et al. Triploidy induction by CB and their survival rate and triploidy rate in Kumamoto oyster (Crossostrea sikamea)[J]. Journal of Fisheries of China, 2019, 43(4):1029-1037(in Chinese)
    [10] 徐疏梅. 新一代DNA测序技术的应用与研究进展[J]. 徐州工程学院学报(自然科学版), 2018, 33(4):60-64 Xu S M. Application and research progress of a new generation of DNA sequencing technology[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2018, 33(4):60-64(in Chinese)
    [11] 王海. 高通量测序技术新名词的理解和辨析[J]. 中国科技术语, 2017, 19(4):51-54 Wang H. Discrimination of novel terms in high-throughput sequencing[J]. China Terminology, 2017, 19(4):51-54(in Chinese)
    [12] 王兴春, 杨致荣, 王敏, 等. 高通量测序技术及其应用[J]. 中国生物工程杂志, 2012, 32(1):109-114 Wang X C, Yang Z R, Wang M, et al. High-throughput sequencing technology and its application[J]. China Biotechnology, 2012, 32(1):109-114(in Chinese)
    [13] 于聘飞, 王英, 葛芹玉. 高通量DNA测序技术及其应用进展[J]. 南京晓庄学院学报, 2010, 26(3):1-5 Yu P F, Wang Y, Ge Q Y. High-fluxed DNA sequencing technology and its application development[J]. Journal of Nanjing Xiaozhuang University, 2010, 26(3):1-5(in Chinese)
    [14] Zhan A B, Wang Y, Brown B, et al. Isolation and characterization of novel microsatellite markers for yellow perch (Perca flavescens)[J]. International Journal of Molecular Sciences, 2009, 10(1):18-27
    [15] Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes[J]. Nucleic Acids Research, 1984, 12(10):4127-4138
    [16] 代金霞. 微卫星DNA标记技术及其应用[J]. 农业科学研究, 2005, 26(1):67-70, 79 Dai J X. Application of microsatellite DNA as molecular genetic marker[J]. Journal of Agricultural Sciences, 2005, 26(1):67-70, 79(in Chinese)
    [17] 瞿陆峰, 潘伟荣, 曾养志. 微卫星DNA标记及其应用[J]. 畜牧与饲料科学, 2010, 31(4):6-8 Qu L F, Pan W R, Zeng Y Z. Genstic marker and application of microsatellite DNA[J]. Animal Husbandry and Feed Science, 2010, 31(4):6-8(in Chinese)
    [18] 张正义, 邢秀梅, 胡鹏飞, 等. 微卫星标记及其在动物亲缘关系鉴定中的应用[J]. 基因组学与应用生物学, 2018, 37(4):1406-1412 Zhang Z Y, Xing X M, Hu P F, et al. Microsatellite markers and their application in animal genetic relationship identification[J]. Genomics and Applied Biology, 2018, 37(4):1406-1412(in Chinese)
    [19] Wang Y, Ren R, Yu Z. Bioinformatic mining of EST-SSR loci in the Pacific oyster, Crassostrea gigas[J]. Animal Genetics, 2008, 39(3):287-289
    [20] Yu Z N, Wang Y H, Fu D K. Development of Fifty-one novel EST-SSR loci in the Pacific oyster, Crassostrea gigas by data mining from the public EST database[J]. Conservation Genetics Resources, 2010, 2(S1):13-18
    [21] Wang Y P, Guo X M. Development and characterization of EST-SSR markers in the eastern oyster Crassostrea virginica[J]. Marine Biotechnology, 2007, 9(4):500-511
    [22] 雷杜娟. 额尔齐斯河贝加尔雅罗鱼微卫星标记筛选及其遗传多样性分析[D]. 武汉:华中农业大学, 2017. Lei D J. Isolation of microsatellite makers for Leuciscus leuciscus baicalensis from the irtysh river in Xingjiang and analysis of its genetic diversity[D]. Wuhan:Huazhong Agricultural University, 2017(in Chinese).
    [23] 刘志毅, 相建海. 微卫星DNA分子标记在海洋动物遗传分析中的应用[J]. 海洋科学, 2001, 25(6):11-13 Liu Z Y, Xiang J H. Application of the microsatellite technique forgenetic analysis in marine animals[J]. Marine Sciences, 2001, 25(6):11-13(in Chinese)
    [24] 孙波, 鲍毅新, 赵庆洋, 等. 微卫星位点获取方法的研究进展[J]. 生态学杂志, 2009, 28(10):2130-2137 Sun B, Bao Y X, Zhao Q X, et al. Methods for obtaining microsatellite loci:a review[J]. Chinese Journal of Ecology, 2009, 28(10):2130-2137(in Chinese)
    [25] 韩斐斐, 亓海刚, 李莉, 等. 长牡蛎基因组微卫星引物的开发和特性描述[J]. 海洋通报, 2011, 30(5):566-571 Han F F, Qi H G, Li L, et al. Development and characterization of SSR in genome for the Pacific Oyster Crassostrea gigas[J]. Marine Science Bulletin, 2011, 30(5):566-571(in Chinese)
    [26] 白洁. 太平洋牡蛎分子标记的开发与应用研究[D]. 青岛:中国海洋大学, 2010. Bai J. Development and application of molecular markers in Pacific oyster (Crassostrea gigas)[D]. Qingdao:Ocean University of China, 2010(in Chinese).
    [27] 李莉. 长牡蛎的分子标记筛选和遗传图谱构建[D]. 青岛:中国科学院研究生院(海洋研究所), 2003. Li L. Molecular marker development and linkage mapping in the pacific oyster Crassostrea gigas thunberg[D]. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2003(in Chinese).
    [28] Weber J L. Informativeness of human (dC-dA) n·(dG-dT) n polymorphisms[J]. Genomics, 1990, 7(4):524-530
    [29] 胡依依, 隋正红, 彭冲, 等. 聚丙烯酰胺凝胶与毛细管电泳检测龙须菜SSR位点的比较研究[J]. 中国海洋大学学报, 2018, 48(3):65-72 Hu Y Y, Sui Z H, Peng C, et al. Comparison on two SSR detection methods of polyacrylamide gel electrophoresis and capillary electrophoresis in Gracilariopsis lemaneiformis[J]. Periodical of Ocean University of China, 2018, 48(3):65-72(in Chinese)
    [30] 牛夏梦, 勾新磊, 赵新颖. 毛细管电泳技术的发展与应用[J]. 食品安全质量检测学报, 2016, 7(11):4341-4345 Niu X M, Gou X L, Zhao X Y. Development and application of capillary electrophoresis technique[J]. Journal of Food Safety and Quality, 2016, 7(11):4341-4345(in Chinese)
    [31] Lehmann T, Hawley W A, Collins F H. An evaluation of evolutionary constraints on microsatellite loci using null alleles[J]. Genetics, 1996, 144(3):1155-1163
    [32] 沈浩, 刘登义. 遗传多样性概述[J]. 生物学杂志, 2001, 18(3):4-7 Shen H, Liu D Y. Summary of genetic diversity[J]. Journal of Biology, 2001, 18(3):4-7(in Chinese)
    [33] Solbrig O T. From genes to ecosystems:a research agenda for biodiversity:report of a IUBS-SCOPE-UNESCO workshop, Harvard Forest, Petersham, MA, USA, June 27-July 1, 1991[M]. Cambridge:IUBS, 1991.
    [34] 彭银辉, 刘楚吾, 郭昱嵩, 等. 三种笛鲷的野生群体和养殖群体遗传多样性的微卫星分析[J]. 农业生物技术学报, 2008, 16(5):810-814 Peng Y H, Liu C W, Guo Y S, et al. Microsatellites analysis on genetic diversities of three species from wild and cultured populations of snappers (Lutjanus)[J]. Journal of Agricultural Biotechnology, 2008, 16(5):810-814(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄飘逸,马海涛,喻子牛,张跃环,高红梅,彭建军.利用高通量测序开发的熊本牡蛎微卫星标记评价野生和养殖群体的遗传多样性及通用性[J].水产学报,2020,44(3):368~377

复制
分享
文章指标
  • 点击次数:1162
  • 下载次数: 1410
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-03-09
  • 最后修改日期:2019-06-06
  • 录用日期:2019-10-24
  • 在线发布日期: 2020-03-10
文章二维码