基于线粒体DNA控制区序列的短棘鲾群体遗传学
CSTR:
作者:
中图分类号:

Q347;S931.5

基金项目:

国家自然科学基金(41776171)


Population genetics study of Leiognathus equulus based on the control region fragment of mitochondrial DNA
Author:
Fund Project:

National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    物种的遗传结构对推断群体历史动态如有效群体大小、地理分布变迁、基因流、遗传分化等具有重要意义。本实验采用线粒体DNA控制区高变区序列对采自我国海南和台湾的3个短棘鲾群体进行了遗传学比较研究。结果显示,92尾个体共检测到32个单倍型,其中共享单倍型7个;单倍型多样性指数的范围为0.61±0.12~0.86±0.05;核苷酸多样性指数的范围为0.003 3±0.002 4~0.005 3±0.003 4;32个单倍型构建的邻接关系树和最小跨度树均可分为2个单倍型类群,单倍型类群A共有22个单倍型,全部由海南文昌和三亚新村群体构成,单倍型类群B共有10个单倍型,除Hap13外,其余全部由台湾新竹群体构成;台湾新竹群体与海南2个群体之间存在显著差异,但海南文昌群体和三亚新村群体之间无显著差异;中性检验与核苷酸不配对分布分析的结果均显示,短棘鲾2个单倍型类群可能发生了群体扩张事件,扩张时间分别为52 500~105 000和67 600~135 200年前。

    Abstract:

    The genetic structure of species plays an important role in inferring population dynamics such as effective population size, geographical distribution, gene flow and population genetic differentiation. In order to reveal the genetic diversity level and genetic structure of Leiognathus equulus populations, a total of 92 individuals from 3 populations were collected and analyzed by control region fragments. The length of the control region fragment was 393 bp. A total of 32 haplotypes were detected for 92 individuals and 7 haplotypes were shared. The haplotype and nucleotide diversity of Xinzhu population was lower than that of two populations from Hainan. The whole haplotype and nucleotide diversity was 0.61±0.12 to 0.86±0.05 and 0.003 3±0.002 4 to 0.005 3±0.003 4, respectively. Two clades (Clade A and Clade B) were obtained in the neighbor-joining tree and median-networks. Clade A consisted of 22 haplotypes, which all were from Hainan populations; Clade B consisted of 10 haplotypes, which all are from Taiwan except Hap13. The haplotype and nucleotide diversity of Clade A was 0.81±0.04 and 0.003 7±0.002 5, and the haplotype and nucleotide diversity of Clade B was 0.69±0.10 and 0.003 3±0.002 4. Significant genetic differentiation was detected between Xinzhu population and the other two populations. The results of AMOVA showed that most genetic variation occurred among groups, which account for 75.37%. Tajima’s D and Fu’s Fs statistics for two clades were significantly negative for these two clades, which rejected the hypothesis of selective neutrality. The mismatch distribution of L. equulus appeared to be unimodal for two clades, and closely matched the expected distributions under the sudden-expansion model. The expanding time may be nearly 52 500-105 000 and 67 600-135 200 years ago in the late Pleistocene for two clades. The present phylogeographic pattern of L. equulus populations may be the combination of historical factors and current factors. The isolation of the Pleistocene glacial land bridge resulted in genetic differentiation of the populations and the isolated population had a secondary connection. Geographical distance hinders gene exchange and promotes the formation of the existing distribution pattern of L. equulus populations.

    参考文献
    [1] McFall-Ngai M J, Dunlap P V. External and internal sexual dimorphism in leiognathid fishes: morphological evidence for sex-specific bioluminescent signaling[J]. Journal of Morphology, 1984, 182(1): 71-83
    [2] Woodland D J, Premcharoen S, Cabanban A S. Leiognathidae Slipmouths (ponyfishes)[M]//Carpenter K E, Niem V H. Species identification guide for fishery purposes: the living marine resources of the western central pacific. Rome: FAO, 2001: 2792-2823.
    [3] Abraham K J, Joshi K K, Murty V S R. Taxonomy of the fishes of the family Leiognathidae (Pisces, Teleostei) from the west coast of India[J]. Zootaxa, 2011, 2886(1): 1-18
    [4] Chakrabarty P, Sparks J S. Diagnoses for Leiognathus Lacepède 1802, Equula Cuvier 1815, Equulites Fowler 1904, Eubleekeria Fowler 1904, and a new ponyfish genus (Teleostei: Leiognathidae)[J]. American Museum Novitates, 2008, 3623: 1-11
    [5] Soars N A, Leis J M. Larval development of the common ponyfish, Leiognathus equulus (Teleostei: Leiognathidae)[J]. Ichthyological Research, 2010, 57(3): 263-271
    [6] 郑文莲. 鲾科[M]//朱元鼎, 张春霖, 成庆泰. 南海鱼类志. 北京: 科学出版社, 1962: 438-454. Zheng W L. Family Leiognathidae[M]//Zhu Y D, Zhang C L, Cheng Q T. Fishes of South China Sea. Beijing: Science Press, 1962: 438-454(in Chinese).
    [7] 沈世杰. 鲾科[M]//沈世杰. 台湾鱼类志. 中国台北: 台湾大学出版社, 1993: 342-346. Shen S C. Family leiognathidae[M]//Shen S C. Fishes of Taiwan. Taipei, China: Taiwan University Press, 1993: 342-346(in Chinese).
    [8] 陈大刚, 张美昭. 鲾科[M]//陈大刚, 张美昭. 中国海洋鱼类. 青岛: 中国海洋大学出版社, 2016: 1114-1123. Chen D G, Zhang M Z. Family leiognathidae[M]//Chen D G, Zhang M Z. Marine fishes of China. Qingdao: China Ocean University Press, 2016: 1114-1123(in Chinese).
    [9] 刘静, 吴仁协, 康斌, 等. 鲾科. 北部湾鱼类图鉴[M]. 北京: 科学出版社, 2016: 158-166. Liu J, Wu R X, Kang B, et al. Family Leiognathidae. Fishes of Beibu Gulf[M]. Beijing: Science Press, 2016: 158-166(in Chinese).
    [10] Crandall K A, Posada D, Vasco D. Effective population sizes: missing measures and missing concepts[J]. Animal Conservation, 1999, 2(4): 317-319
    [11] 郭立, 李隽, 王忠锁, 等. 基于四个线粒体基因片段的银鱼科鱼类系统发育[J]. 水生生物学报, 2011, 35(3): 449-459 Guo L, Li J, Wang Z S, et al. Phylogenetic relationships of noodle-fishes (Osmeriformes: Salangidae) based on four mitochondrial genes[J]. Acta Hydrobiologica Sinica, 2011, 35(3): 449-459(in Chinese)
    [12] Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics[J]. Aquaculture, 2004, 238(1-4): 1-37
    [13] 肖武汉, 张亚平. 鱼类线粒体DNA的遗传与进化[J]. 水生生物学报, 2000, 24(4): 384-391 Xiao W H, Zhang Y P. Genetics and evolution of mitochondrial DNA in fish[J]. Acta Hydrobiologica Sinica, 2000, 24(4): 384-391(in Chinese)
    [14] Liu J X, Gao T X, Wu S F, et al. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845)[J]. Molecular Ecology, 2007, 16(2): 275-288
    [15] Shamblin B M, Bagley D A, Ehrhart L M, et al. Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences[J]. Conservation Genetics, 2015, 16(3): 673-685
    [16] Staunton-Smith J, Blaber S J M, Greenwood J G. Interspecific differences in the distribution of adult and juvenile ponyfish (Leiognathidae) in the Gulf of Carpentaria, Australia[J]. Marine and Freshwater Research, 1999, 50(7): 643-653
    [17] 李渊, 张静, 张然, 等. 南沙群岛西南部和北部湾口海域鱼类物种多样性[J]. 生物多样性, 2016, 24(2): 166-174 Li Y, Zhang J, Zhang R, et al. Fish diversity in southwestern seas of Nansha Islands and the mouth of Beibu Bay[J]. Biodiversity Science, 2016, 24(2): 166-174(in Chinese)
    [18] 晏磊, 谭永光, 杨吝, 等. 珠江口水域秋季刺网的渔获组成及多样性分析[J]. 南方水产科学, 2016, 12(1): 111-119 Yan L, Tan Y G, Yang L, et al. Catch composition and diversity of gillnet fishery in the Pearl River Estuary coastal waters of the South China Sea in autumn[J]. South China Fisheries Science, 2016, 12(1): 111-119(in Chinese)
    [19] 袁华荣, 陈丕茂, 秦传新, 等. 南海柘林湾鱼类群落结构季节变动的研究[J]. 南方水产科学, 2017, 13(2): 26-35 Yuan H R, Chen P M, Qin C X, et al. Seasonal variation of fish community structure in Zhelin Bay, the South China Sea[J]. South China Fisheries Science, 2017, 13(2): 26-35(in Chinese)
    [20] Chakrabarty P, Sparks J S, Ho H C. Taxonomic review of the ponyfishes (Perciformes: Leiognathidae) of Taiwan[J]. Marine Biodiversity, 2010, 40(2): 107-121
    [21] Lee C F, Liu K M, Su W C, et al. Reproductive biology of the common ponyfish Leiognathus equulus in the south-western waters off Taiwan[J]. Fisheries Science, 2005, 71(3): 551-562
    [22] Leis J M, Piola R F, Hay A C, et al. Ontogeny of behaviour relevant to dispersal and connectivity in the larvae of two non-reef demersal, tropical fish species[J]. Marine and Freshwater Research, 2009, 60(3): 211-223
    [23] Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual[M]. 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1989.
    [24] Kocher T D, Thomas W K, Meyer A, et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(16): 6196-6200
    [25] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452
    [26] Excoffier L, Lischer H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567
    [27] Posada D, Crandall K A. MODELTEST: testing the model of DNA substitution[J]. Bioinformatics, 1998, 14(9): 817-818
    [28] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874
    [29] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425
    [30] Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap[J]. Evolution, 1985, 39(4): 783-791
    [31] Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data[J]. Genetics, 1992, 131(2): 479-491
    [32] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585-595
    [33] Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2): 915-925
    [34] Grant W A S, Bowen B W. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426
    [35] Liu J X, Gao T X, Yokogawa K, et al. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific[J]. Molecular Phylogenetics and Evolution, 2006, 39(3): 799-811
    [36] Han Z Q, Gao T X, Yanagimoto T, et al. Genetic population structure of Nibea albiflora in Yellow Sea and East China Sea[J]. Fisheries Science, 2008, 74(3): 544-552
    [37] Song N, Ma G Q, Zhang X M, et al. Genetic structure and historical demography of Collichthys lucidus inferred from mtDNA sequence analysis[J]. Environmental Biology of Fishes, 2014, 97(1): 69-77
    [38] 赵峰, 庄平, 章龙珍, 等. 基于线粒体Cyt b基因的黄海南部和东海银鲳群体遗传结构分析[J]. 水生生物学报, 2011, 35(5): 745-752 Zhao F, Zhuang P, Zhang L Z, et al. Population genetic structure of Pampus argenteus in the South Yellow Sea and East China Sea based on the mitochondrial Cyt b sequence[J]. Acta Hydrobiologica Sinica, 2011, 35(5): 745-752(in Chinese)
    [39] Wang P X. Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features[J]. Marine Geology, 1999, 156(1-4): 5-39
    [40] Voris H K. Maps of Pleistocene sea levels in southeast Asia: Shorelines, river systems and time durations[J]. Journal of Biogeography, 2000, 27(5): 1153-1167
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高天翔,高兵兵,李忠炉,单斌斌,宋娜.基于线粒体DNA控制区序列的短棘鲾群体遗传学[J].水产学报,2020,44(5):715~722

复制
分享
文章指标
  • 点击次数:1356
  • 下载次数: 1553
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-04-12
  • 最后修改日期:2019-06-10
  • 录用日期:2019-06-13
  • 在线发布日期: 2020-04-28
文章二维码