进径比对矩形圆弧角养殖池水动力特性影响
CSTR:
作者:
中图分类号:

S955.1

基金项目:

国家重点研发计划(2017YFD0701701);国家自然科学基金面上项目(31872609);自治区(新疆)重点研发计划(2017B01004-2);广东省重点领域研发计划(2019B020215001);辽宁省高等学校海洋产业技术研究院项目(2018-CY-24);大连理工大学海岸和近海工程国家重点实验室开放基金项目(LP1818)


A numerical study of the effect of relative inflow distance on hydrodynamic characteristics in the single-drain rectangular aquaculture tank with arc angles
Author:
Fund Project:

National key R & D plan project (2017YFD0701); General program of NSFC (31872609);Key R & D plan project of Xinjiang Autonomous Region (2017B01004-2); R & D plan of key areas of Guangdong Province (2019B020215001); Project of Institute of marine industry technology of Liaoning University (2018-CY-24); Open fund project of National Key Laboratory of coastal and offshore engineering of Dalian University of Technology (LP1818)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [15]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究单管入流模式下,进径比(参数C/BC为射流孔位置到养殖池壁的水平距离,B为养殖池短边边长)对单通道矩形圆弧角养殖池系统水动力特性的影响,实验运用计算流体动力学仿真技术构建单通道矩形圆弧角养殖池三维数值计算模型,应用平均流速、阻力系数和速度分布均匀系数等流体动力学特征量分析养殖池内(尤其是池底)的流场形态,并修正能量有效利用系数以评估养殖池系统的能量有效利用率。结果显示,将进径比参数C/B从0.00增大到0.05可有效改善养殖池内流场特性,进径比参数C/B设置在0.02~0.04之间有利于单通道矩形圆弧角养殖池系统获得最佳的流场条件。研究表明,进径比参数的较小优化可显著提高养殖池内平均流速与能量有效利用率,利于形成均匀稳定的流场。

    Abstract:

    In order to explore the influence of the position of the water inlet device on the hydrodynamic characteristics of the single-drain rectangular arc angle aquaculture tank, a new parameter, the relative inflow distance C/B (C is the horizon distance from inlet to sidewall, B is the width of the rectangular tank) was proposed in this paper, and the complex flow field of near the sewage outlet were analyzed by fluid dynamics characteristics variables, and to measure the effective utilization rate of water in aquaculture tank, the effective utilization coefficient of energy ηe is put forward. Meanwhile based on the Reynolds averaged Navier Stokes (RANS) equation and RNG k-ε turbulence model, a three-dimensional numerical model of rectangular arc angle aquaculture tank was constructed. Computational fluid dynamics simulation technology was used to calculate and analyze the flow field environment in the constructed aquaculture tank. By adjusting the layout position of the inlet system, the flow field in the tank (especially at the bottom) was optimized, and the influence of the optimization of hydrodynamic conditions on the collection and discharge performance of the aquaculture tank system was analyzed. This base case is validated against the experimental velocity measurements using Acoustic Doppler Velocimetry (ADV) at predefined locations across the central vertical plane of the tank. On this basis, the hydrodynamic conditions of the aquaculture tank system were systematically analyzed by hydrodynamic characteristics, such as the average velocity, energy efficiency, velocity distribution uniformity at the bottom of the tank and so on. The numerical simulation results show that the average velocity and energy efficiency can be significantly improved by optimizing the relative inflow distance, which is conducive to the formation of uniform and stable flow field. And increasing the relative inflow distance parameter C/B from 0.00 to 0.05 can effectively improve the flow field characteristics in the aquaculture tank, and setting the relative inflow distance parameter C/B between 0.02 and 0.04 is beneficial to obtain the best flow field conditions for the single channel rectangular arc angle aquaculture tank system.The results show that the ratio parameter C/B in the range of 0.02~0.04 could effectively improve flow field characteristics of the system so as to get better hydrodynamic conditions for circulating aquaculture, and relatively minor construction changes could improve the hydrodynamic conditions of the aquaculture system and open up new ideas for obtaining the hydrodynamic environment conducive to fish welfare and production operation.

    参考文献
    [1] 唐茹霞, 史策, 刘鹰. 循环水养殖系统管理运行存在主要问题调查分析[J]. 广东海洋大学学报, 2018, 38(1): 100-106
    Tang R X, Shi C, Liu Y. Analysis on the major problems in the management and operation of recirculating aquaculture system[J]. Journal of Guangdong Ocean University, 2018, 38(1): 100-106(in Chinese)
    [2] 陈丕茂, 舒黎明, 袁华荣, 等. 国内外海洋牧场发展历程与定义分类概述[J]. 水产学报, 2019, 43(9): 1851-1869
    Chen P M, Shu L M, Yuan H R, et al. Review on development, definition and classification of marine ranching in domestic and overseas[J]. Journal of Fisheries of China, 2019, 43(9): 1851-1869(in Chinese)
    [3] 潘荣华, 胡一丞, 陆宁基, 等. 循环水养殖技术研究进展[J]. 科学养鱼, 2018(11): 1-2
    Pan R H, Hu Y C, Lu N J, et al. Research progress of recirculating aquaculture technology[J]. Scientific Fish Farming, 2018(11): 1-2(in Chinese)
    [4] 徐皓. 水产养殖设施与深水养殖平台工程发展战略[J]. 中国工程科学, 2016, 18(3): 37-42
    Xu H. Development strategy for aquaculture facility and deepwater aquaculture platform[J]. Engineering Science, 2016, 18(3): 37-42(in Chinese)
    [5] 李忠义, 林群, 李娇, 等. 中国海洋牧场研究现状与发展[J]. 水产学报, 2019, 43(9): 1870-1880
    Li ZY, Lin Q, Li J, et al. Present situation and future development of marine ranching construction in China[J]. Journal of Fisheries of China, 2019, 43(9): 1870-1880(in Chinese)
    [6] Labatut R A, Ebeling J M, Bhaskaran R, et al. Exploring flow discharge strategies of a mixed-cell raceway (MCR) using 2-D computational fluid dynamics (CFD)[J]. Aquacultural Engineering, 2015, 66: 68-77
    [7] Rasmussen M R, McLean E. Comparison of two different methods for evaluating the hydrodynamic performance of an industrial-scale fish-rearing unit[J]. Aquaculture, 2004, 242(1-4): 397-416
    [8] Davidson J, Summerfelt S. Solids flushing, mixing, and water velocity profiles within large (10 and 150 m3) circular ‘Cornell-type’ dual-drain tank[J]. Aquacultural Engineering, 2004, 32(1): 245-271
    [9] Summerfelt S T, Davidson J W, Waldrop T B, et al. A partial-reuse system for coldwater aquaculture[J]. Aquacultural Engineering, 2004, 31(3-4): 157-181
    [10] Summerfelt S T, Davidson J, Wilson G, et al. Advances in fish harvest technologies for circular tanks[J]. Aquacultural Engineering, 2009, 40(2): 62-71
    [11] Labatut R A, Ebeling J M, Bhaskaran R, et al. Effects of inlet and outlet flow characteristics on mixed-cell raceway (MCR) hydrodynamics[J]. Aquacultural Engineering, 2007, 37(2): 158-170
    [12] Labatut R A, Ebeling J M, Bhaskaran R, et al. Modeling hydrodynamics and path/residence time of aquaculture-like particles in a mixed-cell raceway (MCR) using 3D computational fluid dynamics (CFD)[J]. Aquacultural Engineering, 2015, 67: 39-52
    [13] Xue B R, Ren X Z, Shi X Y, et al. A study on the influence of bottom structure in recirculating aquaculture tank on velocity field[J]//Proceedings of the Twenty-Ninth International Ocean and Polar Engineering Conference. Honolulu, Hawaii, USA: ISOPE, 2018: 1325-1330.
    [14] 于林平, 薛博茹, 任效忠, 等. 单进水管结构对单通道方形圆弧角养殖池水动力特性的影响研究[J]. 大连海洋大学学报, 2020, 35(1): 134-140
    Yu L P, Xue B R, Ren X Z, et al. Influence of single inlet pipe structure on hydrodynamic characteristics in single-drain rectangular aquaculture tank with arc angles[J]. Journal of dalian Ocean University, 2020, 35(1): 134-140(in Chinese)
    [15] 薛博茹, 姜恒志, 任效忠, 等. 进径比对方形圆弧角养殖池内流场特性的影响研究[J]. 渔业现代化, 2020(4): 20-27
    Xue B R, Jiang H Z, Ren X Z, et al. Study on the influence of the relative inflow distance on the flow field characteristics in square arc angle aquaculture tank[J]. Fishery Modernization, 2020(4): 20-27(in Chinese)
    [16] Liu Y, Liu B L, Lei J L, et al. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(4): 912-920
    [17] 杨宇, 严忠民, 乔晔. 河流鱼类栖息地水力学条件表征与评述[J]. 河海大学学报(自然科学版), 2007, 35(2): 125-130
    Yang Y, Yan Z M, Qiao Y. Description and review of hydraulic conditions of fish habitats[J]. Journal of Hohai University (Natural Sciences), 2007, 35(2): 125-130(in Chinese)
    [18] Oca J, Masaló I. Flow pattern in aquaculture circular tanks: Influence of flow rate, water depth, and water inlet & outlet features[J]. Aquacultural Engineering, 2013, 52: 65-72
    [19] Masaló I, Oca J. Influence of fish swimming on the flow pattern of circular tanks[J]. Aquacultural Engineering, 2016, 74: 84-95
    [20] Oca J, Masaló I. Design criteria for rotating flow cells in rectangular aquaculture tanks[J]. Aquacultural Engineering, 2007, 36(1): 36-44
    [21] Burley R, Klapsis A. Flow distribution studies in fish rearing tanks. Part 2—Analysis of hydraulic performance of 1 m square tanks[J]. Aquacultural Engineering, 1985, 4(2): 113-134
    [22] 湛含辉. 二次流现象及其初步研究[J]. 株洲工学院学报, 2001, 15(3): 27-29
    Zhan H H. Research and phenomenon of secondary flow[J]. Journal of Zhuzhou Institute of Technology, 2001, 15(3): 27-29(in Chinese)
    [23] 湛含辉, 戴财胜, 张晓琪. 二次流原理在水处理沉降设备中的应用研究[J]. 煤矿环境保护, 2002, 16(3): 36-37, 41
    Zhan H H, Dai C S, Zhang X Q. Research of secondary flow mechanism in the water treatment[J]. Coal Mine Environmental Protection, 2002, 16(3): 36-37, 41(in Chinese)
    [24] 刘威. 矩形流水对虾养殖池集污特性及对虾耐流性研究[D]. 舟山: 浙江海洋大学, 2018.
    Liu W. Study on fouling characteristics and prawn tolerance in shrimp pond[J]. Zhoushan: Zhejiang Ocean University, 2018 (in Chinese).
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

薛博茹,于林平,张倩,任效忠,毕春伟.进径比对矩形圆弧角养殖池水动力特性影响[J].水产学报,2021,45(3):444~452

复制
分享
文章指标
  • 点击次数:1077
  • 下载次数: 1441
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-11-12
  • 最后修改日期:2020-08-12
  • 录用日期:2020-08-21
  • 在线发布日期: 2021-03-11
文章二维码