锌对凡纳滨对虾生长、非特异性免疫指标、抗病力及肠道菌群结构的影响
CSTR:
作者:
中图分类号:

S963

基金项目:

国家自然科学基金(31802316);国家重点研发计划(2019YFD0900200);现代农业产业技术体系专项(CARS-47);广东省科技厅社会发展领域科技计划(2013B021100017)


Effects of dietary zinc on growth, serum non-specific immune indexes, disease resistance and intestinal flora structure in juvenile Litopenaeus vannamei
Author:
Fund Project:

National Natural Science Foundation of China (31802316); National Key Research & Development Program of China (2019YFD0900200); China Agriculture Research System (CARS-47); Industry Technology and Development Special Fund Project of Guangdong Province (2013B02110017)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [78]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究不同锌水平对凡纳滨对虾生长、非特异性免疫指标、抗病力以及肠道菌群结构的影响,实验以ZnSO4·7H2O作为锌源,在对虾基础饲料中分别添加0(对照组)、20、40、60、80、100、150 mg/kg有效锌配制成7种等氮等脂饲料,分别投喂初始体质量为(0.45±0.01) g的健康凡纳滨对虾幼虾8 周。结果显示:① 随着饲料中锌水平的提高,对虾增重率(WGR)、特定生长率(SGR)、存活率(SR)和蛋白质效率(PER)呈先上升后下降的趋势,饲料系数(FCR)呈先下降后上升的趋势。其中60 mg/kg组WGR和SGR均显著高于对照组;80 mg/kg组FCR最低,PER和SR最高,均显著优于对照组。② 80~150 mg/kg组虾体粗脂肪含量显著高于对照组;40~80 mg/kg组虾体粗灰分含量显著高于对照组。③ 40~150 mg/kg组对虾血清总蛋白(TP)、总胆固醇(TC)及甘油三酯(TG)含量均显著高于对照组。④ 饲料中添加锌提高了血清超氧化物歧化酶(SOD)、酚氧化酶(PO)、碱性磷酸酶(AKP)和酸性磷酸酶(ACP)活性及总抗氧化能力(T-AOC),同时显著降低了血清中的丙二醛(MDA)含量,表明锌可改善凡纳滨对虾的非特异性免疫功能。⑤ 在人工急性感染哈维氏弧菌的实验中,随着锌水平的提高,对虾存活率呈先上升后下降的趋势,锌添加组存活率均显著高于对照组,且80 mg/kg组存活率最高,抗病力最强。⑥ 在对虾肠道物种多样性分析中,40和100 mg/kg组对虾肠道有效OTU数目显著高于对照组。随着锌水平的增加,Ace指数和Chao1指数均显著提高,而Shannon指数和Simpson指数无显著变化。研究表明,在本实验条件下,添加适宜水平的锌可促进凡纳滨对虾幼虾的生长、提高抗病力;当饲料中缺乏锌时,对虾的生长和抗病力较差;而过量的锌在一定程度上抑制了对虾的生长,但未出现不良病症。以增重率作为评价指标,饲料中添加94.46 mg/kg锌可显著改善凡纳滨对虾幼虾的生长;以抗病力作为评价依据,凡纳滨对虾幼虾饲料中锌的最适添加量为80 mg/kg。

    Abstract:

    The trial was conducted to study the effects of dietary zinc (Zn) on growth, non-specific immune indexes, disease resistance and intestinal flora structure in juvenile Litopenaeus vannamei. Zinc sulfate heptahydrate (ZnSO4·7H2O) was used as the Zn source in this experiment. The healthy prawns [initial body weight (0.45±0.01) g] were fed diets (isonitrogenous and isolipid) containing available Zn levels (i.e., 0, 20, 40, 60, 80, 100, and 150 mg/kg) for 8 weeks, respectively. The results showed that: ① The weight gain rate (WGR) and specific growth rate (SGR) in the 60 mg/kg group were significantly higher than those in the control group, and the best feed conversion rate (FCR), the optimal protein efficiency ratio (PER) and survival rate (SR) were found in 80 mg/kg group.② The crude lipid (CL) contents in 80-150 mg/kg groups were significantly higher than that in control group, and the contents of crude ash (CA) in 40-80 mg/kg groups were significantly higher than that in control group.③ The contents of serum total protein (TP), total cholesterol (TC) and triglyceride (TG) in Zn supplemented groups were significantly higher than those in control group. ④ Dietary Zn supplement increased the activities of serum superoxide dismutase (SOD), phenol oxidase (PO), alkaline phosphatase (AKP) and acid phosphatase (ACP) and total antioxidant capacity (T-AOC), and significantly decreased the content of malondialdehyde (MDA) in serum, indicating that Zn could improve the non-specific immunity of L. vannamei.⑤ In the experiment of artificial acute infection with Vibrio harveyi, the survival rate of shrimp increased firstly and then decreased with the increase of Zn levels. The survival rate in Zn supplemented group was significantly higher than that in control group, and the highest survival rate and disease resistance were found in 80 mg/kg group. ⑥ In the analysis of intestinal flora, the numbers of effective OTUs in 40 mg/kg and 100 mg/kg groups were significantly higher than that in control group. With the increase of dietary Zn, the Ace index and Chao1 index increased significantly, while the Shannon index and Simpson index had no significant changes. The results showed that an optimal level of Zn could promote the growth and improve the disease resistance of juvenile L. vannamei. The growth performance and disease resistance of L. vannamei were poor when Zn was deficient in diets, while excessive Zn level inhibited the growth of L. vannamei to a certain extent. Overall, based on the WGR, the growth performance of L. vannamei was significantly improved by supplementing 94.46 mg/kg Zn to the diets. Based on the evaluation of disease resistance, the optimal dietary Zn supplement of L. vannamei was 80 mg/kg.

    参考文献
    [1] 王彩理, 刘丛力, 滕瑜. 南美白对虾的营养需求及饲料配制[J]. 天津水产, 2008(3-4): 7-12
    Wang C L, Liu C L, Teng Y. The nutrition need and development of Penaeus vannamei[J]. Tianjin Fisheries, 2008(3-4): 7-12(in Chinese)
    [2] 农业农村部渔业渔政管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020.
    Bureau of fisheries, ministry of agriculture and rural Affairs. China Fishery Statistical Yearbook[M]. Beijing: China Agriculture Press, 2020 (in Chinese).
    [3] 安文强, 黎文伟, 谭北平, 等. 凡纳滨对虾对饲料中钙、磷的营养需求[J]. 水产科学, 2020, 39(1): 1-11
    An W Q, Li W W, Tan B P, et al. Effects of dietary calcium and phosphorus levels on growth, body composition, tissue calcium and phosphorus deposition and serum biochemical indices in pacific white shrimp Litopenaeus vannamei[J]. Fisheries Science, 2020, 39(1): 1-11(in Chinese)
    [4] Baltaci A K, Yuce K, Mogulkoc R. Zinc metabolism and metallothioneins[J]. Biological Trace Element Research, 2018, 183(1): 22-31
    [5] Vallee B L, Galdes A. The metallobiochemistry of zinc enzymes[J]. Advances in Enzymology and Related Areas of Molecular Biology, 1984, 56: 283-430
    [6] Muralisankar T, Bhavan P S, Radhakrishnan S, et al. Effects of dietary zinc on the growth, digestive enzyme activities, muscle biochemical compositions, and antioxidant status of the giant freshwater prawn Macrobrachium rosenbergii[J]. Aquaculture, 2015, 448: 98-104
    [7] Brandão-Neto J, Stefan V, Mendonça B B, et al. The essential role of zinc in growth[J]. Nutrition Research, 1995, 15(3): 335-358
    [8] Luo Z, Tan X Y, Zheng J L, et al. Quantitative dietary zinc requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on hepatic intermediary metabolism and antioxidant responses[J]. Aquaculture, 2011, 319(1-2): 150-155
    [9] Maage A, Julshamn K. Assessment of zinc status in juvenile Atlantic salmon (Salmo salar) by measurement of whole body and tissue levels of zinc[J]. Aquaculture, 1993, 117(1-2): 179-191
    [10] Kuz'mina V V. The influence of zinc and copper on the latency period for feeding and the food uptake in common carp, Cyprinus carpio L.[J]. Aquatic Toxicology, 2011, 102(1-2): 73-78
    [11] Clearwater S J, Farag A M, Meyer J S. Bioavailability and toxicity of dietborne copper and zinc to fish[J]. Comparative Biochemistry and Physiology-Part C: Toxicology & Pharmacology, 2002, 132(3): 269-313
    [12] 郭腾飞, 黄旭雄, 苏明, 等. 饲料锌添加水平对凡纳滨对虾免疫抗菌机能和溶菌酶mRNA及Toll受体mRNA表达的影响[J]. 水产学报, 2011, 35(7): 1081-1089
    Guo T F, Huang X X, Su M, et al. Effects of zinc supplementation in diet on the immunity, Vibrio-resistant ability, lysozyme mRNA and Toll receptor mRNA expressions in the white shrimp (Litopenaeus vannamei)[J]. Journal of Fisheries of China, 2011, 35(7): 1081-1089(in Chinese)
    [13] 张海涛, 陈效儒, 董晓慧, 等. 5种锌源对凡纳滨对虾生长、生化和免疫指标的影响[J]. 水产科学, 2017, 36(1): 15-21
    Zhang H T, Chen X R, Dong X H, et al. Effects of Zn derived from five compounds on growth performance, biochemical and immunity indices in pacific white leg shrimp Litopenaeus vannamei[J]. Fisheries Science, 2017, 36(1): 15-21(in Chinese)
    [14] 田娟, 郜卫华, 文华. 水产动物肠道健康与饲料添加剂[J]. 动物营养学报, 2018, 30(1): 7-13
    Tian J, Gao W H, Wen H. Research advances: intestinal health and feed additives in aquatic animals[J]. Chinese Journal of Animal Nutrition, 2018, 30(1): 7-13(in Chinese)
    [15] 吴金凤, 熊金波, 王欣, 等. 肠道菌群对凡纳滨对虾健康的指示作用[J]. 应用生态学报, 2016, 27(2): 611-621
    Wu J F, Xiong J B, Wang X, et al. Intestinal bacterial community is indicative for the healthy status of Litopenaeus vannamei[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 611-621(in Chinese)
    [16] 谭凤霞, 裴梦婷, 柴毅, 等. 抗菌肽与鱼类肠道健康研究进展[J]. 水产科学, 2020, 39(1): 135-142
    Tan F X, Pei M T, Chai Y, et al. A review: Relationship between antimicrobial peptides and intestinal health in fish[J]. Fisheries Science, 2020, 39(1): 135-142(in Chinese)
    [17] 何远法, 迟淑艳, 谭北平, 等. 酵母培养物对凡纳滨对虾肠道菌群结构的影响[J]. 广东海洋大学学报, 2017, 37(4): 21-27
    He Y F, Chi S Y, Tan B P, et al. Effect of yeast culture on intestinal microbiota of Litopenaeus vannamei[J]. Journal of Guangdong Ocean University, 2017, 37(4): 21-27(in Chinese)
    [18] 殷彬, 林仪彤, 迟淑艳, 等. 四种锌源对珍珠龙胆幼鱼生长性能、抗氧化能力以及矿物元素沉积的影响[J]. 水产学报, 2018, 42(7): 1111-1123
    Yin B, Lin Y T, Chi S Y, et al. Effects of four forms of zinc on growth performance, antioxidant capacity and vertebrae mineral accumulation of juvenile hybrid grouper (♀Epinephelus fuscoguttatus×♂E. lanceolatu)[J]. Journal of Fisheries of China, 2018, 42(7): 1111-1123(in Chinese)
    [19] 谭丽娜. 锌对幼建鲤消化吸收能力、免疫能力和抗氧化功能的影响[D]. 雅安: 四川农业大学, 2009.
    Tan L N. Effect of zine on functions of digestion, immune and antioxidative of juvenile Jian carp (Cyprinus carpio var. Jian)[D]. Yaan: Sichuan Agricultural University, 2009 (in Chinese).
    [20] AOAC. Official methods of analysis of AOAC International[M]. 16th ed. Arlington, Virginia: AOAC International, 1995.
    [21] 王秀华, 宋晓玲, 黄倢. 肽聚糖制剂对南美白对虾体液免疫因子的影响[J]. 中国水产科学, 2004, 11(1): 26-30
    Wang X H, Song X L, Huang J. Effects of peptidoglycan (PG) preparation on humoral immune factors of Litopenaeus vannamei[J]. Journal of Fishery Sciences of China, 2004, 11(1): 26-30(in Chinese)
    [22] 曹谨玲, 陈剑杰. 微量元素锌的生理功能及其应用研究[J]. 家畜生态, 2003, 24(4): 62-65
    Cao J L, Chen J J. The biochemical function of zinc and its application research[J]. Ecology of Domestic Animal, 2003, 24(4): 62-65(in Chinese)
    [23] Senyushkina E S, Ekaterina А. Troshina. The role of zinc in the synthesis and metabolism of thyroid hormones[J]. Clinical and Experimental Thyroidology, 2021, 16(3): 25-30
    [24] Thirunavukkarasu M, Periyakali S B, Subramanian R, et al. Influence of two different dietary zinc sources in freshwater prawn Macrobrachium rosenbergii post larvae[J]. Journal of Oceanology and Limnology, 2018, 37(1): 290-299
    [25] Li W W, Gong Y N, Jin X K, et al. The effect of dietary zinc supplementation on the growth, hepatopancreas fatty acid composition and gene expression in the Chinese mitten crab, Eriocheir sinensis (H. Milne-Edwards) (Decapoda: Grapsidae)[J]. Aquaculture Research, 2010, 41(11): 828-837
    [26] 郭建林, 陈建明, 孙丽慧, 等. 日本沼虾幼虾对饲料中锌的需求量[J]. 动物营养学报, 2013, 25(3): 661-668
    Guo J L, Chen J M, Sun L H, et al. Dietary zinc requirement of juvenile oriental river prawn (Macrobrachium nipponense)[J]. Chinese Journal of Animal Nutrition, 2013, 25(3): 661-668(in Chinese)
    [27] Shiau S Y, Jiang L C. Dietary zinc requirements of grass shrimp, Penaeus monodon, and effects on immune responses[J]. Aquaculture, 2006, 254(1-4): 476-482
    [28] 崔立娇, 张利民, 王际英, 等. 饲料中添加锌对星斑川鲽幼鱼生长、生理生化指标和机体抗氧化的影响[J]. 渔业科学进展, 2011, 32(1): 114-121
    Cui L J, Zhang L M, Wang J Y, et al. Effects of dietary zinc on growth, blood physiological and biochemical indices and antioxidant ability of juvenile starry flounder Platichthys stellatus[J]. Progress in Fishery Sciences, 2011, 32(1): 114-121(in Chinese)
    [29] 王道尊, 赵亮, 俞清, 等. 锌对草鱼鱼种生长的影响[J]. 上海水产大学学报, 1995(1): 62-65
    Wang D Z, Zhao L, Yu Q, et al. Effect of dietary Zn on the growth of grass carp fingerling[J]. Journal of Shanghai Fisheries University, 1995(1): 62-65(in Chinese)
    [30] 乔永刚, 谭北平, 麦康森, 等. 军曹鱼幼鱼对饲料中锌需要量的研究[J]. 中国海洋大学学报, 2007, 37(1): 105-110
    Qiao Y G, Tan B P, Mai K S, et al. Study on the requirement of dietary zinc for juvenile cobia[J]. Periodical of Ocean University of China, 2007, 37(1): 105-110(in Chinese)
    [31] 于万峰, 林黑着, 黄忠, 等. 卵形鲳鲹(Trachinotus ovatus)对饲料中锌的需要量[J]. 动物营养学报, 2019, 31(10): 4602-4611
    Yu W F, Lin H Z, Huang Z, et al. Dietary zinc requirement of juvenile golden pompano (Trachinotus ovatus)[J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4602-4611(in Chinese)
    [32] 杨原志, 吴业阳, 董晓慧, 等. 方斑东风螺饲料中锌需要量的研究[J]. 动物营养学报, 2013, 25(3): 643-650
    Yang Y Z, Wu Y Y, Dong X H, et al. Dietary zinc requirement of spotted Babylon, Babylonia areolate[J]. Chinese Journal of Animal Nutrition, 2013, 25(3): 643-650(in Chinese)
    [33] Tan B P, Mai K S. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino[J]. Aquaculture, 2001, 192(1): 67-84
    [34] 尚含乐, 郭贝贝, 彭涛, 等. 饲粮中添加益生菌制剂对舍饲山羊生长性能及血清生化指标的影响[J]. 动物营养学报, 2019, 31(2): 699-704
    Shang H L, Guo B B, Peng T, et al. Effects of dietary probiotic preparations on growth performance and serum biochemical indexes in housed lambs[J]. Chinese Journal of Animal Nutrition, 2019, 31(2): 699-704(in Chinese)
    [35] 蒋明, 黄凤, 文华, 等. 饲料锌对团头鲂幼鱼生长性能、血清生化指标和抗氧化功能的影响[J]. 中国水产科学, 2015, 22(6): 1167-1176
    Jiang M, Huang F, Wen H, et al. Effects of dietary zinc on growth, serum biochemical indices, and antioxidant responses in juvenile blunt snout bream, Megalobrama amblycephala[J]. Journal of Fishery Sciences of China, 2015, 22(6): 1167-1176(in Chinese)
    [36] 付志欢, 林雪, 舒绪刚, 等. 不同锌源对吉富罗非鱼生长性能、血清生化指标、血清和肝胰脏中微量元素含量的影响[J]. 动物营养学报, 2019, 31(8): 3690-3698
    Fu Z H, Lin X, Shu X G, et al. Effects of different zinc sources on growth performance, serum biochemical indices and trace element contents in serum and hepatopancreas of genetic improvement of farmed tilapia[J]. Chinese Journal of Animal Nutrition, 2019, 31(8): 3690-3698(in Chinese)
    [37] Ruas C B G, dos Santos Carvalho C, de Araujo H S S, et al. Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river[J]. Ecotoxicology and Environmental Safety, 2008, 71(1): 86-93
    [38] Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges[J]. Analytical Biochemistry, 2017, 524: 13-30
    [39] Feng L, Tan L N, Liu Y, et al. Influence of dietary zinc on lipid peroxidation, protein oxidation and antioxidant defence of juvenile Jian carp (Cyprinus carpio var. Jian)[J]. Aquaculture Nutrition, 2011, 17(4): 875-882
    [40] 王铵静, 杨奇慧, 谭北平, 等. 大豆酶解蛋白对凡纳滨对虾幼虾生长性能、血清生化指标、非特异性免疫力和抗病力的影响[J]. 广东海洋大学学报, 2018, 38(1): 14-21
    Wang A J, Yang Q H, Tan B P, et al. Effects of enzymolytic soybean meal on growth performance, serum biochemical indices, non-specific immunity and disease resistance of juvenile Litopenaeus vannamei[J]. Journal of Guangdong Ocean University, 2018, 38(1): 14-21(in Chinese)
    [41] 黄辉洋, 李少菁, 王桂忠. 甲壳动物酚氧化酶活力及其在养殖中的应用[J]. 海洋通报, 2000, 19(3): 79-84
    Huang H Y, Li S J, Wang G Z. Studies on the crustacean phenoloxidase activity and its application[J]. Marine Science Bulletin, 2000, 19(3): 79-84(in Chinese)
    [42] Liuxy P C, Lee K K, Chen S N. Pathogenicity of different isolates of Vibrio harveyi in tiger prawn, Penaeus monodon[J]. Letters in Applied Microbiology, 1996, 22(6): 413-416
    [43] 郁维娜, 戴文芳, 陶震, 等. 健康与患病凡纳滨对虾肠道菌群结构及功能差异研究[J]. 水产学报, 2018, 42(3): 399-409
    Yu W N, Dai W F, Tao Z, et al. Characterizing the compositional and functional structures of intestinal micro-flora between healthy and diseased Litopenaeus vannamei[J]. Journal of Fisheries of China, 2018, 42(3): 399-409(in Chinese)
    [44] 郑金秀, 胡菊香, 池仕运, 等. 大宁河与香溪河细菌群落分布[J]. 环境科学与技术, 2016, 39(8): 171-177
    Zheng J X, Hu J X, Chi S Y, et al. Distribution of bacterial communities in Daning River and Xiangxi River[J]. Environmental Science & Technology, 2016, 39(8): 171-177(in Chinese)
    [45] 韩少锋. 罗非鱼腐败过程菌群结构分析及腐败菌的分离、鉴定与调控[D]. 北京: 中国农业科学院, 2010.
    Han S F. Analysis of the bacterial community structure change in tilapia during spoilage and isolation, identification and control of spoilage organisms[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010 (in Chinese).
    [46] 华蔚颖. 应用454测序技术分析菌群结构的方法学研究[D]. 上海: 上海交通大学, 2010.
    Hua W Y. The method study of the application of 454 pyrosequencing on microbial community analysis[D]. Shanghai: Shanghai Jiao Tong University, 2010 (in Chinese).
    [47] Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031
    [48] Abid A, Davies S J, Waines P, et al. Dietary synbiotic application modulates Atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity[J]. Fish & Shellfish Immunology, 2013, 35(6): 1948-1956
    [49] Cahenzli J, Köller Y, Wyss M, et al. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels[J]. Cell Host & Microbe, 2013, 14(5): 559-570
    [50] Ramirez R F, Dixon B A. Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma)[J]. Aquaculture, 2003, 227(1-4): 417-426
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何树青,李日美,杨奇慧,谭北平,董晓慧,迟淑艳,章双,刘泓宇.锌对凡纳滨对虾生长、非特异性免疫指标、抗病力及肠道菌群结构的影响[J].水产学报,2021,45(10):1726~1739

复制
分享
文章指标
  • 点击次数:1486
  • 下载次数: 1348
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-07-30
  • 最后修改日期:2021-01-12
  • 录用日期:2021-02-06
  • 在线发布日期: 2021-10-26
文章二维码