南极半岛海域南极磷虾资源时空分布格局及尺度研究
CSTR:
作者:
  • 刘慧

    刘慧

    上海海洋大学海洋科学学院,上海 201306;上海海洋大学,极地研究中心,上海 201306;上海海洋大学,大洋渔业资源可持续开发教育部重点实验室极地海洋生态系统研究室,上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 朱国平

    朱国平

    上海海洋大学海洋科学学院,上海 201306;上海海洋大学,极地研究中心,上海 201306;上海海洋大学,大洋渔业资源可持续开发教育部重点实验室极地海洋生态系统研究室,上海 201306;上海海洋大学,国家远洋渔业工程技术研究中心,上海 210306
    在期刊界中查找
    在百度中查找
    在本站中查找
中图分类号:

S 931

基金项目:

国家自然科学基金 (41776185);国家重点研发计划 (2018YFC1406801)


Spatio-temporal distribution pattern and scale of density distribution for Antarctic krill (Euphausia superba) in the Antarctic Peninsula
Author:
  • LIU Hui

    LIU Hui

    College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China;Polar Marine Ecosystem Laboratory, Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Guoping

    ZHU Guoping

    College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China;Polar Marine Ecosystem Laboratory, Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

National Natural Science Foundation of China (41776185); National key R & D Project (2018YFC1406801)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    生物资源分布格局依赖于空间尺度,不适宜的尺度可能会产生误导性的结果。作为南极生态系统的关键物种,南极磷虾的资源分布存在着极为显著的时空异质性,分布格局难以预测。为了解南极磷虾资源在不同空间尺度下的时空分布格局,实验利用科学调查数据,以5′为间隔将数据处理为5′×5′至60′×60′等12个空间尺度,从而针对南极磷虾资源主要分布区的南极半岛开展多尺度分析,并计算不同空间尺度下南极磷虾资源密度分布的Moran's I指数。结果显示,不同空间尺度下南极磷虾资源密度分布的空间格局存在着差异,其中11个空间尺度下的南极磷虾资源密度分布均呈现出聚集趋势。通过Moran's I指数与空间尺度的相关图确定了南极磷虾资源密度分布的特征空间尺度为25′×25′ (Moran's I指数首次穿过y=0的点)和15′×15′ (相关图上Moran's I指数与0无显著差异的最小尺度)。研究表明,Moran's I指数与0之间无显著差异的方法更符合南极磷虾资源自身的特性,建议将15′×15′作为该区域南极磷虾资源分布研究的最适空间尺度。

    Abstract:

    Distribution pattern of living resources depends on the spatial scale, and inappropriate scales may lead to misleading results. As a key species in the Antarctic ecosystem, Antarctic krill (Euphausia superba) distribution demonstrates significant spatial-temporal heterogeneity. Therefore, the distribution pattern of this species cannot be predicted effectively. In order to understand the spatial-temporal distribution pattern of E. superba resources at different spatial scales, this study preprocessed scientific survey data into 12 spatial scales (5′×5′ - 60′×60′) at 5′ intervals of latitude and longitude and carried out multi-scale analysis of this species in the Antarctic Peninsula, which is the main distributional region of E. superba resources. And the Moran's I index of E. superba density distribution at different spatial scales was also calculated. The results showed that the spatial patterns of E. superba differed in spatial scales. The density distribution of resources showed a clustering trend at 11 spatial scales. According to the correlogram between Moran's I index and spatial scale, the characteristic spatial scales of E. superba density distribution were determined as 25′× 25′, which was determined by the Moran's I index crossing the point y=0 for the first time, and 15′× 15′, which was determined by the smallest scale with no significant difference between Moran's I index and zero, respectively. This study showed that the method with no significant difference between Moran's I index and zero value was more consistent with the characteristics of E. superba resources. It was, therefore, suggested that 15′× 15′ could be the optimum spatial scale for studying the distribution of E. superba density in this region.

    参考文献
    [1] Turner M G, O'Neill R V, Gardner R H, et al. Effects of changing spatial scale on the analysis of landscape pattern[J]. Landscape Ecology, 1989, 3(3-4): 153-162
    [2] Wiens J A. Spatial scaling in ecology[J]. Functional Ecology, 1989, 3(4): 385-397
    [3] Feng Y J, Chen L J, Chen X J. The impact of spatial scale on local Moran's I clustering of annual fishing effort for Dosidicus gigas offshore Peru[J]. Journal of Oceanology and Limnology, 2019, 37(1): 330-343
    [4] Rose G A, Leggett W C. The importance of scale to predator-prey spatial correlations: an example of Atlantic fishes[J]. Ecology, 1990, 71(1): 33-43
    [5] Wu J G, Jelinski D E, Luck M, et al. Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics[J]. Geographic Information Sciences, 2000, 6(1): 6-19
    [6] Wu J G, Li H. Concepts of scale and scaling[M]//Wu J G, Jones K B, Li H, et al. Scaling and uncertainty analysis in ecology. Dordrecht: Springer, 2006.
    [7] Fisher J T, Anholt B, Volpe J P. Body mass explains characteristic scales of habitat selection in terrestrial mammals[J]. Ecology and Evolution, 2011, 1(4): 517-528
    [8] Murphy E J, Morris D J, Watkins J L, et al. Scales of interaction between Antarctic krill and the environment[M]//Sahrhage D. Antarctic Ocean and resources variability. Berlin, Heidelberg: Springer, 1988: 120-130.
    [9] 朱国平, 朱小艳. 南极磷虾种群生物学研究进展III—摄食[J]. 水生生物学报, 2014, 38(6): 1152-1160
    Zhu G P, Zhu X Y. Population biology of Antarctic krill (Euphausia superba) III – feeding ecology[J]. Acta Hydrobiologica Sinica, 2014, 38(6): 1152-1160 (in Chinese)
    [10] 薛梅, 张海亭, 朱国平, 等. 2016年夏秋季南极半岛南极磷虾脂肪酸组成及食性研究[J]. 大连海洋大学学报, 2019, 34(5): 710-717
    Xue M, Zhang H T, Zhu G P, et al. Fatty acid composition and feeding habits of Antarctic krill Euphausia superba in the South Shetland Islands during summer - autumn in 2016[J]. Journal of Dalian Ocean University, 2019, 34(5): 710-717 (in Chinese)
    [11] 朱国平, 朱小艳, 李莹春, 等. 2009/2010-2011/2012年度夏秋季南奥克尼群岛水域南极磷虾捕捞群体年龄结构时空变化[J]. 极地研究, 2014, 26(3): 306-315
    Zhu G P, Zhu X Y, Li Y C, et al. Spatial-temporal variation in population age structure of fishery-targeted Antarctic krill (Euphausia superba) around the south Orkney islands in austral summer-fall during 2009/2010 and 2011/2012[J]. Chinese Journal of Polar Research, 2014, 26(3): 306-315 (in Chinese)
    [12] Nicol S, Endo Y. Krill fisheries: Development, management and ecosystem implications[J]. Aquatic Living Resources, 1999, 12(2): 105-120
    [13] Kawaguchi S, Nicol S. Learning about Antarctic krill from the fishery[J]. Antarctic Science, 2007, 19(2): 219-230
    [14] Murphy E J, Watkins J L, Trathan P N, et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2007, 362(1477): 113-148
    [15] Cruz F S, Ernst B, Arata J A, et al. Spatial and temporal dynamics of the Antarctic krill fishery in fishing hotspots in the Bransfield Strait and South Shetland Islands[J]. Fisheries Research, 2018, 208: 157-166
    [16] 刘慧, 朱国平. 南极磷虾资源分布热点分析的空间尺度效应[J]. 水产学报, 2020, 44(11): 1851-1861
    Liu H, Zhu G P. Effect of spatial scale on hotspot analysis of Antarctic krill (Euphausia superba) distribution[J]. Journal of Fisheries of China, 2020, 44(11): 1851-1861 (in Chinese)
    [17] Atkinson A, Siegel V, Pakhomov E A, et al. Oceanic circumpolar habitats of Antarctic krill[J]. Marine Ecology Progress Series, 2008, 362: 1-23
    [18] Cliff A D, Ord J K. Spatial processes: models & applications[M]. London: Pion Limited, 1981.
    [19] Moran P A P. The interpretation of statistical maps[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1948, 10(2): 243-251
    [20] Moran P A P. Notes on continuous stochastic phenomena[J]. Biometrika, 1950, 37(1-2): 17-23
    [21] Epperson B K. Spatial autocorrelation of genotypes under directional selection[J]. Genetics, 1990, 124(3): 757-771
    [22] Bj?rnstad O N, Falck W. Nonparametric spatial covariance functions: estimation and testing[J]. Environmental and Ecological Statistics, 2001, 8(1): 53-70
    [23] Reid K, Sims M, White R W, et al. Spatial distribution of predator/prey interactions in the Scotia Sea: implications for measuring predator/fisheries overlap[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2004, 51(12-13): 1383-1396
    [24] Feng Y J, Chen X J, Liu Y. The effects of changing spatial scales on spatial patterns of CPUE for Ommastrephes bartramii in the northwest Pacific Ocean[J]. Fisheries Research, 2016, 183: 1-12
    [25] Feng Y J, Chen X J, Gao F, et al. Impacts of changing scale on Getis-Ord Gi hotspots of CPUE: a case study of the neon flying squid (Ommastrephes bartramii) in the northwest Pacific Ocean[J]. Acta Oceanologica Sinica, 2018, 37(5): 67-76
    [26] 魏广恩. 北太平洋柔鱼渔场的时空分析与资源丰度的预测[D]. 上海: 上海海洋大学, 2018.
    Wei G E. Spatial and temporal analysis of Ommastrphes bartramii fishing ground and its resource abundance prediction in the North Pacific Ocean[D]. Shanghai: Shanghai Ocean University, 2018 (in Chinese).
    [27] 李英雪, 陈新军, 郭爱, 等. 不同时空尺度下近海日本鲭栖息地模型比较[J]. 水产学报, 2019, 43(4): 935-945
    Li Y X, Chen X J, Guo A, et al. Comparison of habitat suitability index model for Scomber japonicus in different spatial and temporal scales[J]. Journal of Fisheries of China, 2019, 43(4): 935-945 (in Chinese)
    [28] Santora J A, Reiss C S, Cossio A M, et al. Interannual spatial variability of krill (Euphausia superba) influences seabird foraging behavior near Elephant Island, Antarctica[J]. Fisheries Oceanography, 2009, 18(1): 20-35
    [29] Santora J A, Dorman J G, Sydeman W J. Modeling spatiotemporal dynamics of krill aggregations: size, intensity, persistence, and coherence with seabirds[J]. Ecography, 2017, 40(11): 1300-1314
    [30] Brierley A S, Cox M J. Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen[J]. Current Biology, 2010, 20(19): 1758-1762
    [31] Gandomi A H, Alavi A H. Krill herd: a new bio-inspired optimization algorithm[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12): 4831-4845
    [32] Schooley R L. Spatial heterogeneity and characteristic scales of species-habitat relationships[J]. BioScience, 2006, 56(6): 533-537
    [33] 郁文, 刘茂松, 徐驰, 等. 南京市城市景观的特征尺度[J]. 生态学报, 2007, 27(4): 1480-1488
    Yu W, Liu M S, Xu C, et al. The characteristic scales of the urban landscape in the Nanjing metropolitan region[J]. Acta Ecologica Sinica, 2007, 27(4): 1480-1488 (in Chinese)
    [34] Wu J G, Jones K B, Li H B, et al. Scaling and uncertainty analysis in ecology[M]. Switzerland: Springer, 2006.
    [35] 张莹, 雷国平, 林佳, 等. 扎龙自然保护区不同空间尺度景观格局时空变化及其生态风险[J]. 生态学杂志, 2012, 31(5): 1250-1256
    Zhang Y, Lei G P, Lin J, et al. Spatiotemporal change and its ecological risk of landscape pattern in different spatial scales in Zhalong Nature Reserve[J]. Chinese Journal of Ecology, 2012, 31(5): 1250-1256 (in Chinese)
    [36] Denny M W, Helmuth B, Leonard G H, et al. Quantifying scale in ecology: lessons from awave‐swept shore[J]. Ecological Monographs, 2004, 74(3): 513-532
    [37] Wu J G, Qi Y. Dealing with scale in landscape analysis: an overview[J]. Geographic Information Sciences, 2000, 6(1): 1-5
    [38] Turner M G, Dale V H, Gardner R H. Predicting across scales: theory development and testing[J]. Landscape Ecology, 1989, 3(3-4): 245-252
    [39] 王文杰, 孙伟, 邱岭, 等. 不同时间尺度下兴安落叶松树干液流密度与环境因子的关系[J]. 林业科学, 2012, 48(1): 77-85
    Wang W J, Sun W, Qiu L, et al. Relations between stem sap flow density of Larix gmelinii and environmental factors under different temporal scale[J]. Scientia Silvae Sinicae, 2012, 48(1): 77-85 (in Chinese)
    [40] Brierley A S, Goss C, Grant S A, et al. Significant intra-annual variability in krill distribution and abundance at South Georgia revealed by multiple acoustic surveys during 2000/01[J]. CCAMLR Science, 2002, 9: 71-82
    [41] 万树杰, 朱国平. 2018年夏季南奥克尼群岛南极磷虾资源丰度多尺度空间异质性[J]. 水产学报, 2021, 45(5): 716-725.
    Wan S J, Zhu G P. Multi-scale analysis on spatial heterogeneity for abundance of Antarctica krill (Euphausia superba) in the South Orkney Islands during summer 2018[J]. Journal of Fisheries of China, 2021, 45(5): 716-725 (in Chinese).
    [42] Brierley A S, Saunders R A, Bone D G, et al. Use of moored acoustic instruments to measure short-term variability in abundance of Antarctic krill[J]. Limnology and Oceanography:Methods, 2006, 4(2): 18-29
    [43] Fielding S, Watkins J L, Trathan P N, et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997-2013[J]. ICES Journal of Marine Science, 2014, 71(9): 2578-2588
    相似文献
    引证文献
引用本文

刘慧,朱国平.南极半岛海域南极磷虾资源时空分布格局及尺度研究[J].水产学报,2022,46(12):2306~2314

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-04
  • 最后修改日期:2021-02-01
  • 录用日期:2021-02-06
  • 在线发布日期: 2022-12-09
文章二维码