基于计算机视觉的鱼类形态轮廓特征自动提取
作者:
中图分类号:

S 917.4;TP 18

基金项目:

国家重点研发计划(2019YFD0901404);国家自然科学基金(41876141);上海市高校特聘教授“东方学者”岗位计划(0810000243);农业农村部西北太平洋公海渔业资源综合科学调查专项(D-8021-21-0109-01);上海市科技创新行动计划(19DZ1207502)


Automatic extraction of contour features of fish morphology based on computer vision
Author:
  • OU Liguo

    OU Liguo

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LAN Zhenfeng

    LAN Zhenfeng

    College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Bilin

    LIU Bilin

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Xinjun

    CHEN Xinjun

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Yong

    CHEN Yong

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [56]
  • |
  • 相似文献 [13]
  • | | |
  • 文章评论
    摘要:

    鱼类形态变化多样,其形态轮廓特征具有种的特异性,并作为鱼类识别和分类的重要科学依据。形态轮廓特征的提取效果直接影响到自动识别鱼类的精确度,因此,为了研究计算机视觉对鱼类形态轮廓特征的自动提取效果,根据2017年9—11月在太平洋海域采集的1尾大眼金枪鱼的二维图像,进行计算机视觉分析。通过对鱼类图像进行灰度转换,双边滤波,二值化图像处理和轮廓提取等图像处理。利用8个方位的链码技术对鱼类轮廓进行链码信息的自动提取。通过椭圆傅里叶变换计算出形态信息系数,并对鱼类形态进行轮廓重建。结果显示,金枪鱼图像处理后能较好地得到轮廓图像,其链码信息会随着鱼类形态轮廓像素的大小发生变化,而鱼类形态的轮廓重建随着谐次的变化而变化。研究表明,自动提取鱼类形态轮廓特征效果较好。鱼类形态系数在低谐次变化波动较大,在高谐次变化波动较小。轮廓重建在低谐次变换对鱼类整体轮廓信息影响较大,在高谐次变换对鱼类局部轮廓信息影响较大。研究结果为鱼类自动识别和分类奠定前期基础,也为其他相关自动化研究提供借鉴和参考。

    Abstract:

    With the rapid development of artificial intelligence, modern fish biology research technology has been constantly updated. Automated and intelligent fish identification will help promote modern fish biology research development. The contour feature of fish morphology is one of the important features of fish recognition. Fish morphology is diversed, and the contour features of fish morphology have species specificity. Meanwhile, it serves as an important scientific basis for fish identification and classification. The extraction effects of morphological contour features directly affect the accuracy of automatic fish identification. Therefore, in order to study the effect of computer vision on the automatic extraction of fish morphological contour features, a two-dimensional image of one tail T. obesus was collected in the Pacific Ocean from September to November 2017 for computer vision analysis through the fish image gray level transformation, bilateral filter, binary image processing and contour extraction and other image processing. 8 - direction chain code technology was used to automatically extract the chain code information of fish contour. The morphological information coefficient was calculated by elliptic Fourier transform and the contour reconstruction was carried out. The results revealed that the contour image of tuna could be obtained well after processing, and the chain code information changes with the size of the contour pixel of fish shape, and the contour reconstruction of fish shape changed with the change of harmonic number. The research results showed that the automatic extraction of fish contour features was effective. The morphological coefficients of fish fluctuated greatly in low harmonic number and little in high harmonic number. The low harmonic number transformation had a great influence on the overall contour information of fish, while the high harmonic number transformation had a great influence on the local contour information of fish. The results of this study lay a preliminary foundation for automatic fish recognition and classification, and also provide references for other related automation research.

    参考文献
    [1] 朱元鼎, 郑文莲. 中国南海鲹科鱼类两个新种的叙述[J]. 动物学报, 1958, 10(3): 316-321.
    Zhu Y D, Zheng W L. Description of two new species of Carangoid fishes from the South China Sea[J]. Acta Zoologica Sinica, 1958, 10(3): 316-321 (in Chinese).
    [2] 孟庆闻. 7种鱼类仔鱼的形态观察[J]. 水产学报, 1982, 6(1): 65-76.
    Meng Q W. On the morphological characteristics of the larvae of seven species of freshwater fishes[J]. Journal of Fisheries of China, 1982, 6(1): 65-76 (in Chinese).
    [3] 陈新军, 刘必林, 方舟, 等. 头足纲[M]. 北京: 海洋出版社, 2019.
    Chen X J, Liu B L, Fang Z, et al. Cephalopoda[M]. Beijing: China Ocean Press, 2019 (in Chinese).
    [4] 刘必林, 陈新军. 印度洋西北海域鸢乌贼角质颚长度分析[J]. 渔业科学进展, 2010, 31(1): 8-14.
    Liu B L, Chen X J. Beak length analysis of the purpleback flying squid Sthenoeuthis oualaniensis in northwest Indian Ocean[J]. Progress in Fishery Sciences, 2010, 31(1): 8-14 (in Chinese).
    [5] 许巍, 陈新军, 刘必林, 等. 基于眼睛晶体核心微量元素的茎柔鱼地理种群判别[J]. 水产学报, 2020, 44(6): 947-958.
    Xu W, Chen X J, Liu B L, et al. Discrimination of geographical population of jum bo flying squid (Dosidicus gigas) using the trace elements in the nuclear part of eye lenses[J]. Journal of Fisheries of China, 2020, 44(6): 947-958 (in Chinese).
    [6] 欧利国, 刘必林. 基于地标点法的4种鲹科鱼类矢耳石形态分类[J]. 大连海洋大学学报, 2020, 35(1): 114-120.
    Ou L G, Liu B L. Identification of sagittal otolith shapes of four species in family Carangidae based on landmark morphometrics analysis[J]. Journal of Dalian Ocean University, 2020, 35(1): 114-120(in Chinese).
    [7] 欧利国, 力清影, 刘必林. 中国南海东沙群岛海域7种鲹科鱼类矢耳石形态特征[J]. 上海海洋大学学报, 2021, 30(1): 155-162.
    Ou L G, Li Q Y, Liu B L. Stock discrimination using sagittal otolith morphology of seven Carangidae species from the Dongsha Islands in the South China Sea[J]. Journal of Shanghai Ocean University, 2021, 30(1): 155-162(in Chinese).
    [8] 欧利国, 刘必林. 南海东沙群岛海域圆鲹属鱼类矢耳石的形态特征分析[J]. 南方水产科学, 2019, 15(3): 33-40.
    Ou L G, Liu B L. Sagittae morphology of genus Decapterus from Dongsha Islands in South China Sea[J]. South China Fisheries Science, 2019, 15(3): 33-40(in Chinese).
    [9] 陈新军. 海洋渔业资源可持续利用评价[D]. 南京: 南京农业大学, 2001.
    Chen X J. Sustainable utilization assessment of marine fisheries resources[D]. Nanjing: Nanjing Agricultural University, 2001 (in Chinese).
    [10] 刘建康, 曹文宣. 长江流域的鱼类资源及其保护对策[J]. 长江流域资源与环境, 1992, 1(1): 17-23.
    Liu J K, Cao W X. Fish resources of the Yangtze river basin and the tactics for their conservation[J]. Resources and Environment in the Yangtze Basin, 1992, 1(1): 17-23 (in Chinese).
    [11] Siddiqui S A, Salman A, Malik M I, et al. Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data[J]. ICES Journal of Marine Science, 2018, 75(1): 374-389.
    [12] Alsmadi M K, Almarashdeh I. A survey on fish classification techniques[J]. Journal of King Saud University-Computer and Information Sciences, 2020.
    [13] 谢忠红, 郭小清, 程碧云, 等. 基于多特征的淡水鱼种类识别研究[J]. 扬州大学学报(农业与生命科学版), 2016, 37(3): 71-77.
    Xie Z H, Guo X Q, Cheng B Y, et al. Species recognition of fishes based on multiple features[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2016, 37(3): 71-77(in Chinese).
    [14] 张志强, 牛智有, 赵思明. 基于机器视觉技术的淡水鱼品种识别[J]. 农业工程学报, 2011, 27(11): 388-392.
    Zhang Z Q, Niu Z Y, Zhao S M. Identification of freshwater fish species based on computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(11): 388-392 (in Chinese).
    [15] 朱元鼎, 罗云林, 伍汉霖. 中国石首鱼类分类系统的研究和新属新种的叙述[M]. 上海: 上海科学技术出版社, 1963: 1-140.
    Zhu Y D, Luo Y L, Wu H L. The study of the Chinese Sciaenidae classification system and the narrative of new genus[M]. Shanghai: Shanghai Science and Technology Press, 1963: 1-140 (in Chinese).
    [16] 陈大刚, 张美昭. 中国海洋鱼类[M]. 青岛: 中国海洋大学出版社, 2015: 1080-1085.
    Chen D G, Zhang M Z. Marine fishers of China[M]. Qingdao: China ocean university press, 2015: 1080-1085(in Chinese).
    [17] 黄鹤, 梁祺策, 罗德安. 车道线检测中自适应图像预处理算法研究[J]. 测绘科学, 2021, 46(9): 76-82.
    Huang H, Liang Q C, Luo A. Research on adaptive image preprocessing algorithm for lane line detection[J]. Science of Surveying and Mapping, 2021, 46(9): 76-82(in Chinese).
    [18] 梁广顺, 汪日伟, 温显斌. 基于双边滤波与非局部均值的图像去噪研究[J]. 光电子·激光, 2015, 26(11): 2231-2235.
    Liang G S, Wang R W, Wen X B. Image denoising based on bilateral filtering and non-local means[J]. Journal of Optoelectronics·Laser, 2015, 26(11): 2231-2235(in Chinese).
    [19] Freeman H. Computer processing of line-drawing images[J]. Acm Computing Surveys, 1974.
    [20] 王竞雪, 宋伟东, 赵丽科, 等. 改进的Freeman链码在边缘跟踪及直线提取中的应用研究[J]. 信号处理, 2014, 30(4): 422-430.
    Wang J X, Song W D, Zhao L K, et al. Application of improved freeman chain code in edge tracking and straight line extraction[J]. Journal of Signal Processing, 2014, 30(4): 422-430(in Chinese).
    [21] Kuhl F P, Giardina C R. Elliptic Fourier features of a closed contour[J]. Computer Graphics and Image Processing, 1982, 18(3): 236-258.
    [22] 陈新军, 许柳雄. 发展我国“数字海洋渔业”的有关设想[C]//“863计划”数字农业重大专项总体专家组、国家农业信息化工程技术中心.中国数字农业与农村信息化学术研究研讨会论文集. 北京: “863计划”数字农业重大专项总体专家组、国家农业信息化工程技术中心, 2005: 50-52.
    Chen X J, Xu L X. Development of China's "digital Marine fisheries" related ideas[C]//"863 Plan" Digital Agriculture Major Special General Expert Group, National Engineering Technology Center for Agricultural Informatization. Proceedings of China Digital Agriculture and Rural Informatization Symposium. Beijing: "863 Plan" Digital Agriculture Major Special General Expert Group, National Engineering Technology Center for Agricultural Informatization, 2005: 50-52 (in Chinese).
    [23] 国家水产总局南海水产研究所. 南海诸岛海域鱼类志[M]. 北京: 科学出版社, 1979.
    South China Sea Fisheries Institute, China National Bureau of Aquatic Products. The fishes of the islands in the South China Sea[M]. Beijing: Science Press, 1979 (in Chinese).
    [24] 孟庆闻. 鱼和鱼的分类[J]. 中国水产, 1982(1): 31-32.
    Meng Q W. Fish and the classification of fish[J]. China Fisheries, 1982(1): 31-32 (in Chinese).
    [25] Levin A, Nadler B. Natural image denoising: optimality and inherent bounds[C]//IEEE. Conference on Computer Vision & Pattern Recognition. Colorado Springs: IEEE, 2011: 2833-2840.
    [26] Jordan H, Dyck W V, Smodic R. A co-processed contour tracing algorithm for a smart camera [J]. Journal of Real-Time Image Processing , 2011, 6(1): 23-31.
    [27] Freeman H. On the encoding of arbitrary geometric configurations[J]. IRE Transactions on Electronic Computers, 1961, EC-10(2): 260-268.
    [28] 王福斌, 潘兴辰, 孙志林. 飞秒激光烧蚀光斑轮廓提取及其链码描述研究[J]. 中国测试, 2020, 46(4): 116-122.
    Wang F B, Pan X C, Sun Z L. Research on the contour extraction of spot ablated by femtosecond laser and its chain code description[J]. China Measurement & Test, 2020, 46(4): 116-122 (in Chinese).
    [29] 王福斌, 潘兴辰, 王尚政, 等. 飞秒激光光斑轮廓的傅里叶描述子重建及特征提取[J]. 激光与红外, 2019, 49(9): 1147-1152.
    Wang F B, Pan X C, Wang S Z, et al. Fourier descriptor reconstruction and feature extraction for femtosecond laser spot contour[J]. Laser & Infrared, 2019, 49(9): 1147-1152 (in Chinese).
    [30] 邓仕超, 李伟明, 龙芋宏, 等. 一种改进的二值图像边界跟踪与边界链码获取算法[J]. 激光与光电子学进展, 2018, 55(6): 061007.
    Deng S C, Li W M, Long Y H, et al. Improved algorithm for boundary trackingand boundary chain code acquisition of binary image[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061007 (in Chinese).
    [31] 欧利国, 刘必林, 方舟. 基于椭圆傅里叶变换的鱼类矢耳石和听沟形态识别[J]. 海洋渔业, 2019, 41(4): 385-396.
    Ou L G, Liu B L, Fang Z. Identification of sagittal otolith morphology and sulcus morphology based on elliptic Fourier transform[J]. Marine Fisheries, 2019, 41(4): 385-396 (in Chinese).
    [32] Zion B, Shklyar A, Karplus I. Sorting fish by computer vision[J]. Computers and Electronics in Agriculture, 1999, 23(3): 175-187.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

欧利国,蓝振峰,刘必林,陈新军,陈勇.基于计算机视觉的鱼类形态轮廓特征自动提取[J].水产学报,2024,48(12):129106

复制
分享
文章指标
  • 点击次数:52
  • 下载次数: 59
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-12-23
  • 最后修改日期:2021-10-15
  • 录用日期:2022-03-31
  • 在线发布日期: 2024-12-18
文章二维码