人工鱼礁区不同底质对底栖游泳生物群落特征的影响
CSTR:
作者:
中图分类号:

S 932.8

基金项目:

国家重点研发计划 (2019YFD0901302)


Effects of different substrate types on community characteristics of benthic swimming organisms in the artificial reef area
Author:
Fund Project:

National Key R&D Program of China (No. 2019YFD0901302)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [67]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究人工鱼礁投放后的不同底质对底栖游泳生物群落结构特征的影响,实验以海区中央投放的构件礁划分半径为20、400和600 m 3个样带,采用地笼与摄像相结合的方法,分别于2017年6月和8月、2018年6月 (2次)、2019年6月和7月在小竹山岛人工鱼礁区进行了6个航次的调查。应用相对重要性指数 (IRI)、主坐标分析 (PCoA)和单因素方差分析等分析群落时空组成变化,利用广义加性模型 (GAM)研究环境因子对单位捕捞努力量 (CPUE)和多样性指数的影响。IRI和PCoA测定结果显示,地笼主要捕获日本蟳、海燕、大泷六线鱼、许氏平鲥及其他梭形鱼类;摄像主要捕获海燕等棘皮类、葛氏长臂虾、纹缟虾虎鱼、六丝钝尾虾虎鱼、钟馗虾虎鱼及矛尾刺虾虎鱼。单因素方差分析显示,两种采样方法在200和400 m样带的CPUE均较高,与600 m样带有显著差异,但年份间无显著差异。GAM模型显示,CPUE随投礁年份和底质类型的复杂度增加而增加,与构件礁及石块礁底质呈正相关,且受盐度及温度影响。多样性指数在样带、年际间无显著差异,GAM模型显示,其在地笼渔获物的多样性指数显著高于摄像,并受盐度、透明度影响,但与底质类型无关。本研究揭示了不同底质对底栖游泳生物的影响,证明了地笼与摄像结合调查方法的互补性,为多种鱼礁底质的管理提供参考依据。

    Abstract:

    In order to explore the impact of different substrate types after the deployment of artificial reefs on the community structure characteristics of benthic swimming species, six cruises of field surveys were conducted in the artificial reef area located in the Xiaozhushan Island. The survey area was divided into three transects with a radius of 200 m, 400 m, and 600 m based on the artificial reef modules deployed in the center of the sea area. Trap and visual census methods were combined to sample benthic swimming organisms in June, August 2017, June 2018 (twice), and June, July 2019. Relative importance index (IRI), principal coordinate analysis (PCoA) and one-way analysis of variance (ANOVA) were utilized to explore the variance of spatial-temporal constitution of the community, and General additive model (GAM) was utilized analyze the effects of environmental factors to catch per unit effort (CPUE) and biodiversity index of the community. The results showed that two sampling methods totally obtained 47 species in 5 categories, including 38 species from trap, 28 species from visual census and 19 species in common. IRI and PCoA indicated that Charybdis japonica, Asterina pectinifera, Hexagrammos otakii, Sebastes schlegelii, and other fusiform fish were mainly captured by trap; Echinodermata such as A. pectinifera, Palaemon graviera, Tridentiger trigonocephalus, Amblychaeturichthys hexanema, Triaenopogon barbatus and Chaeturichthys stigmatias were mainly captured by visual census. One-way ANOVA of both sampling methods indicated that the CPUE of 200 m and 400 m transects was significantly higher than 600 m transect, but there was no significant difference between years. GAM showed CPUE increased with the rising complexity of substrate types and duration of the deployment of artificial reefs, was positively correlated with substrates of artificial reef and rock, and was affected by salinity and temperature. In addition, GAM showed that biodiversity index of trap was significantly higher than visual census, and it was influenced by salinity and transparency. But there was no connection with substate types. This study revealed the effects of different substrate types to benthic swimming organisms, proved the complementary of the combination of trap and visual census, and provided a reference for the management of reef substrate.

    参考文献
    [1] Miller M W. Using ecological processes to advance artificial reef goals[J]. ICES Journal of Marine Science, 2002, 59(Suppl): S27-S31
    [2] 林军, 章守宇. 人工鱼礁物理稳定性及其生态效应的研究进展[J]. 海洋渔业, 2006, 28(3): 257-262
    Lin J, Zhang S Y. Research advances on physical stability and ecological effects of artificial reef[J]. Marine Fisheries, 2006, 28(3): 257-262 (in Chinese)
    [3] 周艳波, 蔡文贵, 陈海刚, 等. 人工鱼礁生态诱集技术的机理及研究进展[J]. 海洋渔业, 2010, 32(2): 225-230
    Zhou Y B, Cai W G, Chen H G, et al. The mechanism and research progress on fish attraction technique for artificial reefs[J]. Marine Fisheries, 2010, 32(2): 225-230 (in Chinese)
    [4] Ault J S. Book review: the ecology of marine fishes: California and adjacent waters[J]. The Quarterly Review of Biology, 2007, 82(3): 293-294
    [5] 于沛民, 张秀梅. 日本美国人工鱼礁建设对我国的启示[J]. 渔业现代化, 2006(2): 6-7,20
    Yu P M, Zhang X M. The enlightenment of Japanese and American artificial reef construction to our our country[J]. Fishery Modernization, 2006(2): 6-7,20 (in Chinese)
    [6] Feary D A, Burt J A, Bartholomew A. Artificial marine habitats in the Arabian Gulf: review of current use, benefits and management implications[J]. Ocean & Coastal Management, 2011, 54(10): 742-749
    [7] Keller K, Smith J A, Lowry M B, et al. Multispecies presence and connectivity around a designed artificial reef[J]. Marine and Freshwater Research, 2017, 68(8): 1489-1500
    [8] Abecasis D, Bentes L, Lino P G, et al. Residency, movements and habitat use of adult white seabream (Diplodus sargus) between natural and artificial reefs[J]. Estuarine, Coastal and Shelf Science, 2013, 118: 80-85
    [9] 唐衍力, 白怀宇, 盛化香, 等. 海州湾前三岛鱼礁区许氏平鲥的分布及YPUE与近礁距离的关系[J]. 中国海洋大学学报, 2016, 46(11): 151-157
    Tang Y L, Bai H Y, Sheng H X, et al. Relationships between distribution of Sebastes schlegelii, its YPUE and distance off artificial reef around Qiansan Island of Haizhou Bay[J]. Periodical of Ocean University of China, 2016, 46(11): 151-157 (in Chinese)
    [10] 辛孝科, 张立斌, 于正林, 等. 栖息地分布与种内竞争对刺参集群特征的影响[J]. 海洋科学, 2018, 42(5): 138-144
    Xin X K, Zhang L B, Yu Z L, et al. Effects of habitat distribution and intraspecific competition on aggregation features of sea cucumber Apostichopus japonicus[J]. Marine Sciences, 2018, 42(5): 138-144 (in Chinese)
    [11] 吴富村, 阙华勇, 张国范. 我国皱纹盘鲍底播增养殖历史、现状及未来发展趋势[J]. 海洋科学, 2020, 44(8): 56-68
    Wu F C, Que H Y, Zhang G F. History, current status, and future development of the Pacific abalone seed release and sea ranching in China[J]. Marine Sciences, 2020, 44(8): 56-68 (in Chinese)
    [12] 马荍沣, 张瑞瑾, 席彦彬, 等. 开口比变化对人工鱼礁流场效应影响的评价[J]. 安徽农业科学, 2018, 46(5): 105-108
    Ma Q F, Zhang R J, Xi Y B, et al. Evaluation on effect of artificial reef opening rate on flow field effects[J]. Journal of Anhui Agricultural Sciences, 2018, 46(5): 105-108 (in Chinese)
    [13] 曾旭, 章守宇, 林军, 等. 岛礁海域保护型人工鱼礁选址适宜性评价[J]. 水产学报, 2018, 42(5): 673-683
    Zeng X, Zhang S Y, Lin J, et al. Site selection suitability assessment for protective artificial reefs in island area[J]. Journal of Fisheries of China, 2018, 42(5): 673-683 (in Chinese)
    [14] 王宇, 侯纯强, 汪笑宇, 等. 天津近岸海域人工鱼礁区渔业资源增殖效果初步评估[J]. 海洋湖沼通报, 2018(2): 137-145
    Wang Y, Hou C Q, Wang X Y, et al. Preliminary evaluation on proliferation effects of artificial reefs in live oyster reef area, Tianjin, China[J]. Transactions of Oceanology and Limnology, 2018(2): 137-145 (in Chinese)
    [15] 张萌萌, 刘岳, 解涛, 等. 威海西霞口海洋牧场鱼礁区中许氏平鲉的生长、死亡及合理利用[J]. 水产学报, 2019, 43(9): 1925-1936
    Zhang M M, Liu Y, Xie T, et al. Growth, mortality and reasonable utilization of Sebastes schlegelii in the artificial reef area of Weihai, Shandong Province[J]. Journal of Fisheries of China, 2019, 43(9): 1925-1936 (in Chinese)
    [16] 唐衍力, 解涛, 于浩林, 等. 环境与摄食对山东省近海鱼礁区不同体长许氏平鲉分布的影响[J]. 水产学报, 2020, 44(6): 924-935
    Tang Y L, Xie T, Yu H L, et al. Effects of environment and feeding factors on the distribution of different body lengths of Sebastes schlegelii in the reef areas of Shandong Province[J]. Journal of Fisheries of China, 2020, 44(6): 924-935 (in Chinese)
    [17] 刘鸿雁, 杨超杰, 张沛东, 等. 基于Ecopath模型的崂山湾人工鱼礁区生态系统结构和功能研究[J]. 生态学报, 2019, 39(11): 3926-3936
    Liu H Y, Yang C J, Zhang P D, et al. An Ecopath evaluation of system structure and function for the Laoshan Bay artificial reef zone ecosystem[J]. Acta Ecologica Sinica, 2019, 39(11): 3926-3936 (in Chinese)
    [18] Guidetti P, Bianchi C N, Chiantore M, et al. Living on the rocks: substrate mineralogy and the structure of subtidal rocky substrate communities in the Mediterranean Sea[J]. Marine Ecology Progress Series, 2004, 274: 57-68
    [19] 吴忠鑫, 张磊, 张秀梅, 等. 荣成俚岛人工鱼礁区游泳动物群落特征及其与主要环境因子的关系[J]. 生态学报, 2012, 32(21): 6737-6746
    Wu Z X, Zhang L, Zhang X M, et al. Nekton community structure and its relationship with main environmental variables in Lidao artificial reef zones of Rongcheng[J]. Acta Ecologica Sinica, 2012, 32(21): 6737-6746 (in Chinese)
    [20] 唐衍力, 孙晓梅, 盛化香, 等. 威海小石岛人工鱼礁区渔获物组成特征及与环境因子的关系[J]. 中国海洋大学学报(自然科学版), 2016, 46(5): 22-31
    Tang Y L, Sun X M, Sheng H X, et al. Community structure of catch and its relationship with environmental factors in Xiaoshidao artificial reef zones of Weihai city[J]. Periodical of Ocean University of China, 2016, 46(5): 22-31 (in Chinese)
    [21] Bortone S A, Hastings R W, Oglesby J L. Quantification of reef fish assemblages: a comparison of several in situ methods[J]. Northeast Gulf Science, 1986, 8(1): 1
    [22] Mellin C, Andréfouët S, Ponton D. Spatial predictability of juvenile fish species richness and abundance in a coral reef environment[J]. Coral Reefs, 2007, 26(4): 895-907
    [23] Pinkas L, Oliphant M S, Iverson I L K. Food habits of albacore, bluefin tuna, and bonito in California waters[J]. Fish Bulletin, 1971, 152: 1-105
    [24] 王新萌, 盛化香, 刘淑德, 等. 莱州湾芙蓉岛人工鱼礁区鮻资源分布特征及其与环境因子的相关性分析[J]. 水产学报, 2019, 43(9): 1914-1924
    Wang X M, Sheng H X, Liu S D, et al. Distribution characteristics of Liza haematocheila and its relationship with environmental factors in Furongdao artificial reef zones, Laizhou Bay, China[J]. Journal of Fisheries of China, 2019, 43(9): 1914-1924 (in Chinese)
    [25] Yu H L, Yang W Z, Liu C D, et al. Relationships between community structure and environmental factors in Xixiakou artificial reef area[J]. Journal of Ocean University of China, 2020, 19(4): 883-894
    [26] Kurihara T. Effects of sediment type and food abundance on the vertical distribution of the starfish Asterina pectinifera[J]. Marine Ecology Progress Series, 1999, 181: 269-277
    [27] 袁小楠, 梁振林, 吕振波, 等. 威海近岸人工鱼礁布设对生物资源恢复效果[J]. 海洋学报, 2017, 39(10): 54-64
    Yuan X N, Liang Z L, Lü Z B, et al. The effects of ecological restoration of the artificial reef in Weihai offshore[J]. Acta Oceanologica Sinica, 2017, 39(10): 54-64 (in Chinese)
    [28] 刘鸿雁, 杨超杰, 张沛东, 等. 青岛崂山湾人工鱼礁区底层游泳动物群落结构特征[J]. 生物多样性, 2016, 24(8): 896-906
    Liu H Y, Yang C J, Zhang P D, et al. Demersal nekton community structure of artificial reef zones in Laoshan Bay, Qingdao[J]. Biodiversity Science, 2016, 24(8): 896-906 (in Chinese)
    [29] 陈勇, 杨军, 田涛, 等. 獐子岛海洋牧场人工鱼礁区鱼类资源养护效果的初步研究[J]. 大连海洋大学学报, 2014, 29(2): 183-187
    Chen Y, Yang J, Tian T, et al. The enhancement effect of fishery resources on artificial reefs in marine ranching area in Zhangzi Island[J]. Journal of Dalian Ocean University, 2014, 29(2): 183-187 (in Chinese)
    [30] Ólafsson E B, Peterson C H, Ambrose W G Jr. Does recruitment limitation structure populations and communities of macro-invertebrates in marine soft sediments: the relative significance of pre-and post-settlement processes[J]. Oceanography and Marine Biology:An Annual Review, 1994, 32: 65-109
    [31] Fukuyama A K, Oliver J S. Sea star and walrus predation on bivalves in Norton Sound, Bering Sea, Alaska[J]. Ophelia, 1985, 24(1): 17-36
    [32] Ward R D, Andrew J. Population genetics of the northern Pacific seastar Asterias amurensis (Echinodermata: Asteriidae): allozyme differentiation among Japanese, Russian, and recently introduced Tasmanian populations[J]. Marine Biology, 1995, 124(1): 99-109
    [33] Hatanaka M, Kosaka M. Biological studies on the population of the starfish, Asterias amurencis, in Sendai Bay[J]. Tohoku Journal of Agricultural Research, 1959, 9(3): 159-178
    [34] Santos M N, Monteiro C C. Comparison of the catch and fishing yield from an artificial reef system and neighbouring areas off Faro (Algarve, south Portugal)[J]. Fisheries Research, 1998, 39(1): 55-65
    [35] 刘长东, 易坚, 唐衍力, 等. 海州湾中时空和环境因子对桩张网捕捞小黄鱼的影响[J]. 中国海洋大学学报, 2015, 45(9): 36-41
    Liu C D, Yi J, Tang Y L, et al. Effects of stow net to the catch rates Larimichthys polyactis between temporal-spatial and environmental factors in the Haizhou bay[J]. Periodical of Ocean University of China, 2015, 45(9): 36-41 (in Chinese)
    [36] 邢磊, 徐宾铎, 张崇良, 等. 环境因子对海州湾及邻近海域大泷六线鱼分布影响的分析[J]. 中国海洋大学学报, 2015, 45(6): 45-50
    Xing L, Xu B D, Zhang C L, et al. Environmental influence on the distribution of Hexagrammos otakii inhabiting Haizhou bay and its adjacent waters[J]. Periodical of Ocean University of China, 2015, 45(6): 45-50 (in Chinese)
    [37] Bohnsack J A, Sutherland D L, Harper D E, et al. The effects of fish trap mesh size on reef fish catch off southeastern Florida[J]. Marine Fisheries Review, 1989, 51(2): 36-46
    [38] Tang Y L, Liu Y, Liu C D, et al. Improving the accordion-shaped trap selectivity for black rockfish by mounting escape vents: a case study from the small-scale fishery in Shandong, China[J]. Fisheries Research, 2019, 219: 105317
    [39] Jordan L K B, Gilliam D S, Spieler R E. Reef fish assemblage structure affected by small-scale spacing and size variations of artificial patch reefs[J]. Journal of Experimental Marine Biology and Ecology, 2005, 326(2): 170-186
    [40] Harvey E, Fletcher D, Shortis M R, et al. A comparison of underwater visual distance estimates made by scuba divers and a stereo-video system: implications for underwater visual census of reef fish abundance[J]. Marine and Freshwater Research, 2004, 55(6): 573-580
    [41] 方光杰, 孙利元, 唐衍力, 等. 基于刺网和地笼渔获物的人工鱼礁区资源丰度比较研究[J]. 中国海洋大学学报, 2018, 48(S1): 23-33
    Fang G J, Sun L Y, Tang Y L, et al. A comparative study on fishery resource of artificial reefs based on gillnet and cage catches[J]. Periodical of Ocean University of China, 2018, 48(S1): 23-33 (in Chinese)
    [42] Henmi Y, Fujiwara C, Kirihara S, et al. Burrow morphology of alpheid shrimps: case study of Alpheus brevicristatus and a review of the genus[J]. Zoological Science, 2017, 34(6): 498-504
    [43] Hamano T, Matsuura S. Ecological studies on the Japanese mantis shrimp, Oratosquilla oratoria (DE HAAN). II. Egg laying and egg mass nursing behaviour in the Japanese mantis shrimp[J]. Nippon Suisan Gakkaishi, 1984, 50(12): 1969-1973
    [44] Lü Z M, Liu L Q, Li H, et al. Deep phylogeographic break among Octopus variabilis populations in China: evidence from mitochondrial and nuclear DNA analyses[J]. Biochemical Systematics and Ecology, 2013, 51: 224-231
    [45] 张宏晔, 许强, 刘辉, 等. 海州湾前三岛海域底播刺参群体特征初探[J]. 海洋科学, 2015, 39(6): 1-7
    Zhang H Y, Xu Q, Liu H, et al. Preliminary study on the propertyof bottom mariculture sea cucumber (Apostichopus japonicus) group in Qiansan Islands, Haizhou Bay[J]. Marine Sciences, 2015, 39(6): 1-7 (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于浩林,方光杰,周广军,唐衍力,宋协法.人工鱼礁区不同底质对底栖游泳生物群落特征的影响[J].水产学报,2023,47(9):099306

复制
分享
文章指标
  • 点击次数:378
  • 下载次数: 1270
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-05-09
  • 最后修改日期:2021-09-22
  • 录用日期:2021-09-23
  • 在线发布日期: 2023-09-11
文章二维码