枸杞岛筏式贻贝养殖海域鱼类群聚特征
CSTR:
作者:
中图分类号:

S 932.4

基金项目:

国家重点研发计划(2019YFD0901303,2018YFD0900905);上海海洋大学科技发展专项(A2-2006-20-200212)


Characteristics of fish assemblage in a mussel farming area in Gouqi Island waters
Author:
Fund Project:

National Key R&D Program of China (2019YFD0901303); Special fund for science and technology development of Shanghai Ocean University (A2-2006-20-200212);National Key R&D Program of China(2018YFD0900905)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [87]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究筏式贻贝养殖生境鱼类资源养护功能,于2020年9-12月对枸杞岛筏式贻贝养殖生境(分表层区和底层区)及周边岩礁生境的鱼类进行了多网目组合刺网采样。应用相对重要性指数IRI、多样性指数并结合等级聚类、非度量多维标度排序(nMDS)分析鱼类组成和群落结构。结果显示,在2种生境中共采集鱼类55 种,隶属于10目34科47属,其中贻贝养殖生境采集到37种(底层和表层分别为29和20种);岩礁生境共采集到40种。在鱼类组成上,中国花鲈和鲻是贻贝养殖生境表层区的典型优势种,而黄姑鱼和褐菖鲉是贻贝养殖生境底层区的典型优势种;褐菖鲉同时也是岩礁生境的典型优势种。多样性分析表明,贻贝养殖生境的总体鱼类多样性要高于岩礁生境,但尚不显著。多元分析显示,各月份2种生境中的鱼类群落格局均可分为3种类型,虽与养殖表层区、养殖底层区和岩礁区并非严格一致,但各群落间差异依然显著。研究表明,大规模筏式养殖设施的存在吸引了众多中上层鱼类及底层鱼类,也为岩礁生境优势鱼类提供了额外的栖息环境,发挥了近似于浮鱼礁系统的资源养护作用。研究结果可为岛礁海域海洋牧场目标种的选择和人工生境构建模式的应用提供重要参考。

    Abstract:

    The rapid development of marine aquaculture in China, especially that of raft shellfish culture, not only contributes directly to China’s economic benefits, but also facilitates fishery resources conservation to a certain extend. Large-scale raft culture, in a sense, has played a role of artificial floating reefs, providing temporary or permanent feeding or sheltering habitats for fish, which coincides with the core idea of marine ranch development based on floating reef systems. Fish assemblages and their community characteristics in raft mussel farming habitats play key roles in understanding functions of floating artificial reef system in marine ranching area. Hence, fish composition and community structure in surface and bottom levels of a mussel farming habitat in Gouqi Island waters and an adjacent rocky reef habitat were analyzed based on data collected by multi-mesh trammel nets from September to December 2020. Index of relative importance (IRI), species diversity indices and non-metric multidimensional scaling (nMDS) analysis were used. A total of 55 fish species belonging to 47 genera in 34 families of 10 orders were collected from two habitats. Among which, 37 species were collected from mussel farming habitat, including 29 species from bottom level and 20 species from surface level; 40 species were collected from rocky habitat. In terms of dominant species composition, Lateolabrax maculatus and Mugil cephalus were the typical dominant species in the surface level of mussel farming habitat, while Nibea albiflora and Sebastiscus marmoratus were the typical dominant species in the bottom level of mussel farming habitat. S. marmoratus was also a typical dominant species in the reef habitat. The similarity analysis showed that the similarity in species composition between the surface and bottom level of mussel farming habitat and the reef habitat was below a moderate level of dissimilarity. Diversity analysis showed that the overall diversity of mussel farming habitat was higher than that of rocky reef habitat, but not significantly (P>0.05). The multivariate analysis indicated that fish community could be grouped into three types in the two habitats, though it was not strictly consistent with the surface area, bottom area and reef area. Results of ANOSIM suggest that there was significant difference among grouped communities (P<0.05). Our study suggests the following: ① the presence of large-scale raft culture facilities in rocky island waters attract many pelagic and demersal fishes, providing additional habitat for dominant rocky fishes, among which S. marmoratus, N. albiflora, M. cephalus and L. maculatus could be suitable target species in the marine ranching programs of northern East China Sea; ② mussel farming habitat and nearshore rocky reef habitat have obvious complementary and gain of habitat functions, which play essential roles on protection of common commercial fish populations in the East China Sea and comprehensive conservation of local fish in different life stages. It is hoped that this study may contribute to technology as well as target fish selection in marine ranching programs and the application of artificial habitat construction model carried out in island waters.

    参考文献
    [1] 杨红生, 霍达, 许强. 现代海洋牧场建设之我见[J]. 海洋与湖沼, 2016, 47(6): 1069-1074
    Yang H S, Huo D, Xu Q. Views on modern marine ranching[J]. Oceanologia et Limnologia Sinica, 2016, 47(6): 1069-1074 (in Chinese)
    [2] 章守宇, 周曦杰, 王凯, 等. 蓝色增长背景下的海洋生物生态城市化设想与海洋牧场建设关键技术研究综述[J]. 水产学报, 2019, 43(1): 81-96
    Zhang S Y, Zhou X J, Wang K, et al. Review of marine livestock ecological urbanization hypothesis and marine ranching construction key-technology against blue growth background[J]. Journal of Fisheries of China, 2019, 43(1): 81-96 (in Chinese)
    [3] 丁刚, 吴海一, 郭萍萍, 等. 我国海上筏式养殖模式的演变与发展趋势[J]. 中国渔业经济, 2013, 31(1): 164-169
    Ding G, Wu H Y, Guo P P, et al. Evolution and development trend of marine raft cultivation model in China[J]. Chinese Fisheries Economics, 2013, 31(1): 164-169 (in Chinese)
    [4] 汪振华, 梁金玲, 章守宇. 贻贝养殖海域表底层的鱼类组成比较[J]. 生态学杂志, 2015, 34(3): 753-759
    Wang Z H, Liang J L, Zhang S Y. Comparison of pelagic and benthic fish assemblages in mussel farming habitat[J]. Chinese Journal of Ecology, 2015, 34(3): 753-759 (in Chinese)
    [5] Morrisey D J, Cole R G, Davey N K, et al. Abundance and diversity of fish on mussel farms in New Zealand[J]. Aquaculture, 2006, 252(2-4): 277-288
    [6] Lin J, Li C Y, Zhang S Y. Hydrodynamic effect of a large offshore mussel suspended aquaculture farm[J]. Aquaculture, 2016, 451: 147-155
    [7] Plew D R, Stevens C L, Spigel R H, et al. Hydrodynamic implications of large offshore mussel farms[J]. IEEE Journal of Oceanic Engineering, 2005, 30(1): 95-108
    [8] 汪振华, 王凯, 赵静, 等. 贻贝养殖区底层鱼类群落结构特征分析[J]. 海洋科学, 2015, 39(6): 21-31
    Wang Z H, Wang K, Zhao J, et al. Study of benthic fish community structure in mussel farming habitat of Ma’an Archipelago[J]. Marine Sciences, 2015, 39(6): 21-31 (in Chinese)
    [9] Shumway S E, Davis C, Downey R, et al. Guest editorial shellfish aquaculture — in praise of sustainable economies and environments[J]. World Aquaculture, 2003, 34(4): 15-18
    [10] 刘媛媛. 枸杞岛贻贝养殖区生态效应及修复策略研究[D]. 上海: 上海海洋大学, 2016.
    Liu Y Y. Study on the ecological effect and ecological restoration strategies of Mytilus edulis filter-feeding in Gouqi Island[D]. Shanghai: Shanghai Ocean University, 2016 (in Chinese).
    [11] 章守宇, 崔潇, 汪振华, 等. 枸杞岛贻贝养殖筏架附着海藻的群落结构[J]. 水产学报, 2021, 45(5): 726-739
    Zhang S Y, Cui X, Wang Z H, et al. Community structure of epiphytic macroalgae on mussel culture rafts in Gouqi Island[J]. Journal of Fisheries of China, 2021, 45(5): 726-739 (in Chinese)
    [12] Ogilvie S C, Ross A H, Schiel D R. Phytoplankton biomass associated with mussel farms in Beatrix Bay, New Zealand[J]. Aquaculture, 2000, 181(1-2): 71-80
    [13] Trottet A, Roy S, Tamigneaux E, et al. Impact of suspended mussels (Mytilus edulis L.) on plankton communities in a Magdalen Islands lagoon (Québec, Canada): a mesocosm approach[J]. Journal of Experimental Marine Biology and Ecology, 2008, 365(2): 103-115
    [14] Lam-Hoai T, Rougier C, Lasserre G. Tintinnids and rotifers in a northern Mediterranean coastal lagoon. Structural diversity and function through biomass estimations[J]. Marine Ecology Progress Series, 1997, 152(1-3): 13-25
    [15] Lam-Hoai T, Rougier C. Zooplankton assemblages and biomass during a 4-period survey in a northern Mediterranean coastal lagoon[J]. Water Research, 2001, 35(1): 271-283
    [16] Christensen P B, Glud R N, Dalsgaard T, et al. Impacts of longline mussel farming on oxygen and nitrogen dynamics and biological communities of coastal sediments[J]. Aquaculture, 2003, 218(1-4): 567-588
    [17] da Costa K G, Nalesso R C. Effects of mussel farming on macrobenthic community structure in Southeastern Brazil[J]. Aquaculture, 2006, 258(1-4): 655-663
    [18] Wilding T A, Nickell T D. Changes in benthos associated with mussel (Mytilus edulis L.) farms on the west-coast of Scotland[J]. PLoS One, 2013, 8(7): e68313
    [19] 汪振华, 钟佳明, 章守宇, 等. 褐菖鲉幼鱼对贻贝养殖生境的利用规律初探[J]. 水产学报, 2019, 43(9): 1900-1913
    Wang Z H, Zhong J M, Zhang S Y, et al. Habitat use of juvenile rockfish (Sebastiscus marmoratus) in mussel farming waters: a preliminary study[J]. Journal of Fisheries of China, 2019, 43(9): 1900-1913 (in Chinese)
    [20] Colla S, Pranovi F, Fiorin R, et al. Using passive acoustics to assess habitat selection by the brown meagre Sciaena umbra in a northern Adriatic Sea mussel farm[J]. Journal of Fish Biology, 2018, 92(5): 1627-1634
    [21] Clynick B G, McKindsey C W, Archambault P. Distribution and productivity of fish and macroinvertebrates in mussel aquaculture sites in the Magdalen islands (Québec, Canada)[J]. Aquaculture, 2008, 283(1-4): 203-210
    [22] 江涛, 朱烨, 崔铭超, 等. 海上养殖设施与人工鱼礁融合布局流场分析[J]. 渔业现代化, 2019, 46(1): 27-34
    Jiang T, Zhu Y, Cui M C, et al. Flow field analysis on fusion layout of marine culture facilities and artificial reef[J]. Fishery Modernization, 2019, 46(1): 27-34 (in Chinese)
    [23] 庄平, 王幼槐, 李圣法, 等. 长江口鱼类[M]. 上海: 上海科学技术出版社, 2006.
    Zhuang P, Wang Y H, Li S F, et al. Fishes of the Yangtze estuary[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2006 (in Chinese).
    [24] 伍汉霖, 钟俊生. 中国海洋及河口鱼类系统检索[M]. 北京: 中国农业出版社, 2021.
    Wu H L, Zhong J S. Key to marine and estuarial fishes of China[M]. Beijing: China Agriculture Press, 2021 (in Chinese).
    [25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋调查规范 第6部分, 海洋生物调查: GB/T 12763.6-2007 [S]. 北京: 中国标准出版社, 2008: 89-97.
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Specifications for oceanographic survey—Part 6, Marine biological survey: GB/T 12763.6-2007 [S]. Beijing: Standards Press of China, 2008: 89-97 (in Chinese).
    [26] 陈大刚, 张美昭. 中国海洋鱼类[M]. 青岛: 中国海洋大学出版社, 2015.
    Chen D G, Zhang M Z. Marine fishes of China[M]. Qingdao: China Ocean University Press, 2015 (in Chinese).
    [27] 汪振华, 章守宇, 陈清满, 等. 马鞍列岛岩礁生境鱼类群落生态学. Ⅰ. 种类组成和多样性[J]. 生物多样性, 2012, 20(1): 41-50
    Wang Z H, Zhang S Y, Chen Q M, et al. Fish community ecology in rocky reef habitat of Ma’an Archipelago. Ⅰ. Species composition and diversity[J]. Biodiversity Science, 2012, 20(1): 41-50 (in Chinese)
    [28] Holbrook S J, Schmitt R J. Resource overlap, prey dynamics, and the strength of competition[J]. Ecology, 1989, 70(6): 1943-1953
    [29] Wilhm J L. Use of biomass units in Shannon's formula[J]. Ecology, 1968, 49(1): 153-156
    [30] Pielou E C. Species-diversity and pattern-diversity in the study of ecological succession[J]. Journal of Theoretical Biology, 1966, 10(2): 370-383
    [31] Margalef R. Perspectives in ecological theory[M]. Chicago: University of Chicago Press, 1968: 111.
    [32] 汪振华, 章守宇, 王凯. 三横山鱼礁生境鱼类和大型无脊椎动物群落特征[J]. 生态学报, 2010, 30(8): 2026-2035
    Wang Z H, Zhang S Y, Wang K. Fish and macroinvertebrates community structure in artificial habitat around Sanheng Isle, Shengsi, China[J]. Acta Ecologica Sinica, 2010, 30(8): 2026-2035 (in Chinese)
    [33] 刘书荣, 周曦杰, 章守宇, 等. 贻贝筏式养殖区附生大型海藻与两种附着端足目的关系[J]. 生态学杂志, 2018, 37(9): 2737-2744
    Liu S R, Zhou X J, Zhang S Y, et al. Relationship between epiphytic seaweeds and two seaweed-associated amphipods in mussel raft culture area[J]. Chinese Journal of Ecology, 2018, 37(9): 2737-2744 (in Chinese)
    [34] 崔潇. 两类端足目生物对浮筏海藻的选择性研究[D]. 上海: 上海海洋大学, 2020.
    Cui X. Choices of floating raft macroalgae by two amphipods species[D]. Shanghai: Shanghai Ocean University, 2020 (in Chinese).
    [35] Gibbs M T. Interactions between bivalve shellfish farms and fishery resources[J]. Aquaculture, 2004, 240(1-4): 267-296
    [36] 周卫国, 丁德文, 索安宁, 等. 珠江口海洋牧场渔业资源关键功能群的遴选方法[J]. 水产学报, 2021, 45(3): 433-443
    Zhou W G, Ding D W, Suo A N, et al. Key functional groups selection in marine ranching fishery resources from the Pearl River estuary[J]. Journal of Fisheries of China, 2021, 45(3): 433-443 (in Chinese)
    [37] 梁君, 王伟定, 虞宝存, 等. 中街山列岛海洋保护区岛礁生境鱼类资源及群落多样性季节变化[J]. 海洋与湖沼, 2014, 45(5): 979-989
    Liang J, Wang W D, Yu B C, et al. Seasonal variations of fish resources and community diversity of reef habitat in marine protected area of Zhongjieshan Islands[J]. Oceanologia et Limnologia Sinica, 2014, 45(5): 979-989 (in Chinese)
    [38] 汪洋, 吴常文. 中街山列岛岩礁海域鱼类群落多样性研究[J]. 海洋与湖沼, 2015, 46(4): 776-785.
    Wang Y, Wu C W. Fish community diversities in reef waters of Zhongjieshan Islands[D]. Oceanologia et Limnologia Sinica, 2015, 46(4): 776-785 (in Chinese).
    [39] Drouin A, Archambault P, Clynick B, et al. Influence of mussel aquaculture on the distribution of vagile benthic macrofauna in îles de la Madeleine, eastern Canada[J]. Aquaculture Environment Interactions, 2015, 6(2): 175-183
    [40] McKindsey C W, Archambault P, Callier M D, et al. Influence of suspended and off-bottom mussel culture on the sea bottom and benthic habitats: a review[J]. Canadian Journal of Zoology, 2011, 89(7): 622-646
    [41] 钟佳明. 贻贝养殖生境特征及其对褐菖鲉幼鱼生长的影响[D]. 上海: 上海海洋大学, 2019.
    Zhong J M. The characteristics of mussel farming habitat and its effect on the growth of juvenile Sebastiscus marmoratus[D]. Shanghai: Shanghai Ocean University, 2019 (in Chinese).
    [42] 王凯, 李朝文, 汪振华, 等. 马鞍列岛海洋牧场褐菖鲉的摄食习性[J]. 应用生态学报, 2017, 28(7): 2321-2326
    Wang K, Li C W, Wang Z H, et al. Feeding habits of the marbled rockfish Sebastiscus marmoratus in the marine ranching off Ma’an Archipelago, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2321-2326 (in Chinese)
    [43] 王凯, 章守宇, 汪振华, 等. 枸杞岛岩礁生境主要鱼类的食物组成及食物竞争[J]. 应用生态学报, 2012, 23(2): 536-544
    Wang K, Zhang S Y, Wang Z H, et al. Dietary composition and food competition of six main fish species in rocky reef habitat off Gouqi Island[J]. Chinese Journal of Applied Ecology, 2012, 23(2): 536-544 (in Chinese)
    [44] 汪振华, 赵静, 王凯, 等. 马鞍列岛岩礁生境鱼类群落结构时空格局[J]. 生态学报, 2013, 33(19): 6218-6226
    Wang Z H, Zhao J, Wang K, et al. Fish community ecology in rocky reef habitat of Ma'an Archipelago II. Spatio-temporal patterns of community structure[J]. Acta Ecologica Sinica, 2013, 33(19): 6218-6226 (in Chinese)
    [45] 夏蓉. 鲻形目鱼类的分子系统发育关系和历史生物地理学研究[D]. 上海: 复旦大学, 2014.
    Xia R. Studies on molecular phylogeny and historical biogeography of mugilid fishes (Teleostei: Mugiliformes)[D]. Shanghai: Fudan University, 2014 (in Chinese).
    [46] 韩旭东, 章守宇, 汪振华, 等. 马鞍列岛及其东部海域鱼类群落格局与环境因子之间的关系[J]. 水产学报, 2019, 43(6): 1483-1497
    Han X D, Zhang S Y, Wang Z H, et al. Fish community structure and its relationship with environmental factors in the Ma'an Archipelago and its eastern waters[J]. Journal of Fisheries of China, 2019, 43(6): 1483-1497 (in Chinese)
    [47] 汪振华, 王凯, 赵静, 等. 枸杞岛潮下带沙地生境鱼类群落结构和季节变化[J]. 应用生态学报, 2011, 22(5): 1332-1342
    Wang Z H, Wang K, Zhao J, et al. Fish community structure and its seasonal change in subtidal sandy beach habitat off southern Gouqi Island[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1332-1342 (in Chinese)
    [48] Somerfield P J, Supaporn Y, Aryuthaka C. The effects of green mussel Perna viridis (L.) (Mollusca: Mytilidae) culture on nematode community structure in the Gulf of Thailand[J]. The Raffles Bulletin of Zoology, 2000, 48(2): 263-272
    [49] Suplicy F M. A review of the multiple benefits of mussel farming[J]. Reviews in Aquaculture, 2020, 12(1): 204-223
    [50] Callier M D, Byron C J, Bengtson D A, et al. Attraction and repulsion of mobile wild organisms to finfish and shellfish aquaculture: a review[J]. Reviews in Aquaculture, 2018, 10(4): 924-949
    [51] 于南京. 舟山群岛近岸海域鱼类群落结构及生物多样性的年际变化[D]. 杭州: 浙江海洋大学, 2021.
    Yu N J. The structure and structure of fish communities in the coastal waters of Zhoushan Islands inter-annual changes in biodiversity[D]. Hangzhou: Zhejiang Ocean University, 2021 (in Chinese).
    [52] 杨红生, 章守宇, 张秀梅, 等. 中国现代化海洋牧场建设的战略思考[J]. 水产学报, 2019, 43(4): 1255-1262
    Yang H S, Zhang S Y, Zhang X M, et al. Strategic thinking on the construction of modern marine ranching in China[J]. Journal of Fisheries of China, 2019, 43(4): 1255-1262 (in Chinese)
    [53] 王小林, 徐宾铎, 纪毓鹏, 等. 海州湾及邻近海域冬季鱼类群落结构及其与环境因子的关系[J]. 应用生态学报, 2013, 24(6): 1707-1714
    Wang X L, Xu B D, Ji Y P, et al. Fish community structure and its relationships with environmental factors in Haizhou Bay and adjacent waters of East China in winter[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1707-1714 (in Chinese)
    [54] 梁振林, 郭战胜, 姜昭阳, 等. “鱼类全生活史”型海洋牧场构建理念与技术[J]. 水产学报, 2020, 44(7): 1211-1222
    Liang Z L, Guo Z S, Jiang Z Y, et al. Construction concept and technology of the marine ranching mode of the whole life history of fishes[J]. Journal of Fisheries of China, 2020, 44(7): 1211-1222 (in Chinese)
    [55] 殷名称. 鱼类生态学[M]. 北京: 中国农业出版社, 1995.
    Yin M C. Fish ecology[M]. Beijing: China Agriculture Press, 1995 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高炜程,汪振华,章守宇,林军,谭益国,李训猛,陈健渠.枸杞岛筏式贻贝养殖海域鱼类群聚特征[J].水产学报,2024,48(1):019305

复制
分享
文章指标
  • 点击次数:593
  • 下载次数: 843
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-11-09
  • 最后修改日期:2022-01-14
  • 录用日期:2022-12-06
  • 在线发布日期: 2024-01-17
  • 出版日期: 2024-01-01
文章二维码