大菱鲆MKK基因家族全基因组鉴定及其在生物和非生物应激下的表达分析
CSTR:
作者:
中图分类号:

Q 785;S 917.4

基金项目:

中央级公益性科研院所基本科研业务费专项 (2020TD20);山东省泰山学者攀登计划


Genome-wide identification of the MKK gene family in Scophthalmus maximus and its involvement in abiotic and biotic stress responses
Author:
  • ZHENG Weiwei

    ZHENG Weiwei

    College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Xiwen

    XU Xiwen

    Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Songlin

    CHEN Songlin

    College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • E Zechen

    E Zechen

    College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Yingjie

    LIU Yingjie

    College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;Chinese Academy of Fishery Sciences, Beijing 100141, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [144]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了阐明大菱鲆丝裂原活化蛋白激酶激酶 (mitogen-activated protein kinase kinases, MAPKKs或MKKs)基因家族在生物和非生物应激响应中的作用,本实验首先通过生物信息学方法对大菱鲆MKK基因家族进行了全基因组水平的鉴定,利用多个应激相关转录组数据集分析了大菱鲆MKK家族成员在不同组织及不同生物和非生物应激下的表达模式。结果显示,本研究在大菱鲆全基因组水平上共鉴定出9个MKK基因家族成员,它们不均匀地分布在7条染色体上,并分别对其编码蛋白的理化性质、蛋白二级结构和亚细胞定位进行了预测。基于系统发育分析,将SmMKKs划分为5个亚家族。内含-外显子结构、保守基序和多重序列比对分析结果不仅为大菱鲆MKK亚家族分类提供了证据,而且表明SmMKKs在进化上高度保守。SmMKKs在不同组织及不同生物和非生物应激下的基因表达模式分析表明,SmMKKs具有明显的组织特异性表达。另外,结果显示,粘孢子虫和肿大细胞病毒感染后,SmMKK6a呈极显著差异表达;热应激处理后,SmMKK6a呈极显著差异表达;高盐或低盐胁迫后,SmMKK4aSmMKK4bSmMKK6aSmMKK7呈极显著差异表达。SmMKK6a在各种应激条件下均表现出极显著响应,表明其可能在综合抗应激中具有潜在的作用。这可能是第一个对大菱鲆MKK基因家族进行系统识别和功能分析的研究。以上研究结果不仅表明MKK基因家族在大菱鲆响应多种生物和非生物应激中发挥重要作用,而且也为大菱鲆综合抗逆分子选择育种研究提供了重要的理论支撑。

    Abstract:

    Mitogen-activated protein kinase kinases (MAPKKs or MKKs) are essential components of the highly evolutionarily conserved mitogen-activated protein kinase (MAPK) cascade, which play crucial roles in response to a variety of biotic and abiotic stresses and immune responses. However, very little information is available about the MKKs in S. maximus. In order to detect the roles of the MKKs in response to biotic and abiotic stresses in Scophthalmus maximus, we first identified the MKKs of S. maximus at the whole genome level through bioinformatics methods, and then analyzed the expression patterns of MKKs in different tissues and under different biotic and abiotic stresses using multiple stress-related RNA-seq datasets. As a result, a total of 9 MKKs of S. maximus (SmMKKs) were identified, and they were unevenly distributed on 7 chromosomes. Physicochemical characteristics, secondary structure and subcellular localization of the proteins they encode were predicted, respectively. Phylogenetic analysis revealed that SmMKKs were classified into 5 subfamilies. Conserved motifs, intron-exon structure and multiple sequence alignment not only provided evidences for the classification of MKK subfamilies, but also revealed high levels of conservation in evolution within and between subfamilies. Expression patterns of SmMKKs in distinct tissues and under diverse abiotic and biotic stresses were examined using multiple published RNA-seq datasets. As a result, SmMKKs showed obviously tissue-specific expression. In addition, SmMKK6a was extremely significant differentially expressed after infection with both Enteromyxum scophthalmi and Megalocytivirus. After heat stress, SmMKK6a also showed extremely significant differential expression. Furthermore, SmMKK4a, SmMKK4b, SmMKK6a and SmMKK7 were extremely significant differentially expressed after high- or low- salinity stresses. Among these candidate stress-responsive MKK genes, SmMKK6a showed extremely significant response to both abiotic and biotic stresses, demonstrating its potential functions in comprehensive anti-stress. This study may be the first to systematically identify and analyze the MKK gene family in turbot. The results not only demonstrate that SmMKKs play crucial roles in response to various biotic and abiotic stresses, but also provide important theoretical support for the development of molecular selective breeding for comprehensive stress-resistance in S. maximus.

    参考文献
    [1] 尤仲杰, 徐善良, 谢起浪. 浙江沿岸的贝类资源及其增养殖[J]. 东海海洋, 2000, 18(1): 50-56
    You Z J, Xu S L, Xie Q L. Shellfish resources and its cultivation and proliferation along Zhejiang coast[J]. Donghai Marine Science, 2000, 18(1): 50-56 (in Chinese)
    [2] 林志华, 尤仲杰. 浙江滩涂贝类养殖高产技术模式[J]. 海洋科学, 2005, 29(8): 95-99
    Lin Z H, You Z J. Intensive mudflat bivalves culture in Zhejiang[J]. Marine Sciences, 2005, 29(8): 95-99 (in Chinese)
    [3] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴 2013-2022[M]. 北京: 中国农业出版社, 2013-2022.
    Fishery Administration Bureau of Ministry of Agriculture and Rural Affairs, National Aquatic Technology Extension Station, China Fisheries Society. China fishery statistical yearbook 2013-2022[M]. Beijing: China Agricultural Publishing House, 2013-2022 (in Chinese).
    [4] 浙江省海洋水产研究所温州分所. 泥蚶的人工育苗试验[J]. 水产科技情报, 1973(7): 5-8
    Wenzhou Department of Zhejiang Marine Fisheries Research Institute. Experiment on artificial breeding of blood clam (Tegillarca granosa)[J]. Fisheries Science & Technology Information, 1973(7): 5-8 (in Chinese)
    [5] 陈文龙, 何连金, 吴卓成, 等. 泥蚶(Arca granosa Linnaeus)繁殖、育苗研究——(Ⅱ)室内人工育苗实验[J]. 福建水产科技, 1979(1): 46-52
    Chen W L, He L J, Wu Z C, et al. Study on breeding and seedling of Arca granosa[J]. Journal of Fujian Fisheries Research, 1979(1): 46-52 (in Chinese)
    [6] 浙江动物研究室. 缢蛏室内人工育苗试验[J]. 调查报告, 1960(3): 1-5
    Zhejiang Animal Research Laboratory. Indoor artificial seedling experiment of Sinonovacula constricta[J]. Investigation Report, 1960(3): 1-5 (in Chinese)
    [7] 陈文龙, 何连金, 李秀珠, 等. 缢蛏循环水池人工育苗实验报告[J]. 福建水产, 1984(4): 22-29
    Chen W L, He L J, Li X Z, et al. Experimental report on artificial breeding of Sinonovacula constricta in circulating water tank[J]. Journal of Fujian Fisheries, 1984(4): 22-29 (in Chinese)
    [8] 张云飞. 杂色蛤仔的繁殖习性与胚胎发育[J]. 福建水产科技, 1979(1): 75-79
    Zhang Y F. Reproductive habits and embryonic development of Venerupis variegata[J]. Journal of Fujian Fisheries Research, 1979(1): 75-79 (in Chinese)
    [9] 齐秋贞, 林笔水, 吴天明, 等. 菲律宾蛤仔室内催产研究——阴干、氨海水和性诱导法[J]. 水产学报, 1981, 5(3): 235-243
    Qi Q Z, Lin B S, Wu T M, et al. Experiments on in-door induced breeding of Ruditapes philippinarum[J]. Journal of Fisheries of China, 1981, 5(3): 235-243 (in Chinese)
    [10] 许振祖. 缢蛏[J]. 水产科技情报, 1977(S3): 57-60
    Xu Z Z. Sinonovacula constricta[J]. Fisheries Science & Technology Information, 1977(S3): 57-60 (in Chinese)
    [11] 施并章, 傅素宝, 邱文仁, 等. 菲律宾蛤仔土池人工育苗中产卵的研究[J]. 厦门大学学报自然科学版, 1984, 23(2): 211-216
    Shi B Z, Fu S B, Qiu W R, et al. Studies on the spawning Philippine clam Ruditapes philippinarum (Adamset Reeve) in the artificial rearing in earth ponds[J]. Journal of Xiamen University (Natural Science), 1984, 23(2): 211-216 (in Chinese)
    [12] 周友富, 胡达美. 泥蚶工厂化育苗技术[J]. 科学养鱼, 1997(7): 16-17
    Zhou Y F, Hu D M. Industrialized seedling technique of Tegillarca granosa[J]. Scientific Fish Farming, 1997(7): 16-17 (in Chinese)
    [13] 林志华, 王铁杆, 夏彩国. 泥蚶工厂化育苗技术[C]//中国贝类学会-中国动物学会、中国海洋湖沼学会贝类学分会第八次学术讨论会暨张玺教授诞辰100周年纪念会论文集. 北京: 学苑出版社, 1997: 124-129.
    Lin Z H, Wang T G, Xia C G. Techniques for industrialized seedling of blood clam Tegillarca granosa Linnaeus[C]//Chinese Shellfish Society. Collection of Essays of the 8th Symposium of the Chinese Zoological Society and the Chinese Society of Marine and Limnology, Mollusk Branch. Beijing: Academy Press, 1997: 124-129 (in Chinese).
    [14] 吉红九, 于志华, 高继先. 土池培育大规格文蛤苗种的初步研究[J]. 水产养殖, 2000(3): 31-32
    Ji H J, Yu Z H, Gao J X. Preliminary study on the cultivating of large size Meretrix meretrix in soil ponds[J]. Journal of Aquaculture, 2000(3): 31-32 (in Chinese)
    [15] Hadley N H, Manzi J M. Growth of seed clams, Mercenaria mercenaria, at various densities in a commercial scale nursery system[J]. Aquaculture, 1984, 36(4): 369-378
    [16] Manzi J J, Hadley N H, Maddox M B. Seed clam, Mercenaria mercenaria, culture in an experimental-scale upflow nursery system[J]. Aquaculture, 1986, 54(4): 301-311
    [17] Manzi J J, Hadley N H, Battey C, et al. Culture of the Northern hard clam Mercenaria mercenaria (Linne) in a commercial-scale, upflow, nursery system[J]. Journal of Shellfish Research, 1984, 4(2): 119-124
    [18] Deming C J, Russell M P. Assessing manipulations of larval density and culling in hatchery production of the hard clam, Mercenaria mercenaria[J]. Journal of Shellfish Research, 1999, 18(1): 99-105
    [19] Hadley N H, Baldwin R B, Devoe M R, et al. Performance of a tidal-powered upwelling nursery system for Northern Quahogs (hard clams) (Mercenaria mercenaria) in South Carolina[J]. Journal of Shellfish Research, 1999, 18(2): 555-560
    [20] Crenshaw J W, Heffernan P B, Walker R L. Effect of grow out density on heritability of growth rate in the Northern Quahog, Mercenaria mercenaria (Linnaeus, 1758)[J]. Journal of Shellfish Research, 1996, 15(2): 341-344
    [21] 林志华, 柴雪良, 肖国强, 等. 利用上升流系统培育双壳类贝苗的研究[C]//中国海洋湖沼学会中国动物学会贝类学分会第十二次学术讨论会摘要. 太原: 中国动物学会, 2005: 49.
    Lin Z H, Chai X L, Xiao G Q. Study on the cultivation of bivalve seedlings by upwelling system[C]//Collection of Essays of the 12th Symposium of the Chinese Zoological Society and the Chinese Society of Marine and Limnology, Mollusk Branch. Taiyuan: Zoological Society of China, 2005: 49 (in Chinese).
    [22] 肖国强, 柴雪良, 林志华, 等. 平面流水循环系统集约化培育硬壳蛤稚贝的研究[J]. 台湾海峡, 2008, 27(2): 197-203
    Xiao G Q, Chai X L, Lin Z H, et al. Intensive culture for juvenile hard clam Mercenaria mercenaria in circulatory raceway system[J]. Journal of Oceanography in Taiwan Strait, 2008, 27(2): 197-203 (in Chinese)
    [23] 林兴管, 张翔, 滕爽爽, 等. 不同流速和苗种规格对缢蛏平面流中间培育效果的影响[J]. 海洋科学, 2020, 44(4): 103-110
    Lin X G, Zhang X, Teng S S, et al. Effect of different flow rates and sizes on the growth and survival of Sinonovacula constricta juveniles in the circulatory raceway system[J]. Marine Sciences, 2020, 44(4): 103-110 (in Chinese)
    [24] 范建勋, 何琳, 叶小恒. 缢蛏苗种池塘陆基集约化中间培育技术[J]. 科学养鱼, 2021(5): 61-62
    Fan J X, He L, Ye X H. Land based intensive intermediate cultivation for Sinonovacula constricta seedlings[J]. Scientific Fish Farming, 2021(5): 61-62 (in Chinese)
    [25] 刘英杰, 刘永新, 方辉, 等. 我国水产种质资源的研究现状与展望[J]. 水产学杂志, 2015, 28(5): 48-55,60
    Liu Y J, Liu Y X, Fang H, et al. Advances and prospect in research on aquaculture germplasm resources in China[J]. Chinese Journal of Fisheries, 2015, 28(5): 48-55,60 (in Chinese)
    [26] 李梦龙, 郑先虎, 吴彪, 等. 我国水产种质资源收集、保存和共享的发展现状与展望[J]. 水产学杂志, 2019, 32(4): 78-82
    Li M L, Zheng X H, Wu B, et al. Advances and prospects in research on collection, preservation and sharing of aquaculture germplasm resources in China[J]. Chinese Journal of Fisheries, 2019, 32(4): 78-82 (in Chinese)
    [27] Dong Y H, Yao H H, Sun C S, et al. Development of polymorphic SSR markers in the razor clam (Sinonovacula constricta) and cross-species amplification[J]. Genetics and Molecular Research, 2016, 15(1): gmr.15017285
    [28] 董迎辉, 郑崇磊, 姚韩韩, 等. 5个缢蛏野生种群遗传变异的AFLP分析[J]. 基因组学与应用生物学, 2011, 30: 1181-1188
    Dong Y H, Zheng C L, Yao H H, et al. Genetic variation of 5 wild populations of Sinonovaula constricta by AFLP analysis[J]. Genomics and Applied Biology, 2011, 30: 1181-1188 (in Chinese)
    [29] 董迎辉, 姚韩韩, 林志华, 等. 泥蚶生长性状相关AFLP分子标记的筛选[J]. 水产学报, 2012, 36(6): 825-831
    Dong Y H, Yao H H, Lin Z H, et al. Screening of AFLP markers related to growth traits in Tegillarca granosa[J]. Journal of Fisheries of China, 2012, 36(6): 825-831 (in Chinese)
    [30] 周小龙, 朱靖华, 董迎辉, 等. 泥蚶(Tegillarca granosa)基因组SSR和EST-SSR的开发及比较研究[J]. 海洋与湖沼, 2013, 44(2): 467-475
    Zhou X L, Zhu J H, Dong Y H, et al. Development and comparative study of genomic-SSR and EST-SSR in Tegillarca granosa[J]. Oceanologia et Limnologia Sinica, 2013, 44(2): 467-475 (in Chinese)
    [31] Dong Y H, Yao H H, Lin Z H, et al. Characterization of 62 polymorphic EST-SSR markers in the blood clam (Tegillarca granosa) and their cross-amplification in Scapharca subcrenata[J]. Conservation Genetics Resources, 2012, 4(4): 991-997
    [32] Dong Y H, Shi S F, Bao Y B, et al. Development of 90 EST-SNP markers in blood clam (Tegillarca granosa) using high resolution melting (HRM)[J]. Conservation Genetics Resources, 2015, 7(2): 309-314
    [33] 齐晓艳, 董迎辉, 姚韩韩, 等. 文蛤30个微卫星标记的开发及在斧文蛤和帘文蛤中的通用性检测[J]. 水产学报, 2013, 37(8): 1147-1154
    Qi X Y, Dong Y H, Yao H H, et al. Identification of 30 microsatellite markers in Meretrix meretrix and their transferability in Meretrix lamarckii and Meretrix lyrata[J]. Journal of Fisheries of China, 2013, 37(8): 1147-1154 (in Chinese)
    [34] Jing Y, Dong Y H, Yao H H, et al. Characterization of 87 EST-SNP markers in hard clam Meretrix meretrix using high-resolution melting analysis[J]. Conservation Genetics Resources, 2015, 7(4): 811-817
    [35] 孙长森, 王腾达, 董迎辉, 等. 青蛤(Cyclina sinensis)生长性状相关分子标记的AFLP分析[J]. 海洋与湖沼, 2012, 43(1): 106-112
    Sun C S, Wang T D, Dong Y H, et al. AFLP analysis of molecular markers related to growth traits in Cyclina sinensis[J]. Oceanologia et Limnologia Sinica, 2012, 43(1): 106-112 (in Chinese)
    [36] 方军, 沈彦鹏, 张雷雷, 等. 基于转录组数据的青蛤微卫星标记开发与验证[J]. 应用海洋学学报, 2020, 39(2): 214-220
    Fang J, Shen Y P, Zhang L L, et al. Development and verification of SSR markers in Cyclina sinensis[J]. Journal of Applied Oceanography, 2020, 39(2): 214-220 (in Chinese)
    [37] 陈丽梅, 李莉, 石栩蔚, 等. 基于转录组数据的毛蚶SSR分子标记开发与评价[J]. 渔业科学进展, 2022, 43(3): 129-137
    Chen L M, Li L, Shi X W, et al. Development and evaluation of SSR markers based on transcriptome sequencing in Scapharca kagoshimensis[J]. Progress in Fishery Sciences, 2022, 43(3): 129-137 (in Chinese)
    [38] 林志华, 董迎辉, 李宁, 等. 基于形态参数和AFLP标记的文蛤(Meretrix meretrix)不同地理群体遗传变异分析[J]. 海洋与湖沼, 2008, 39(3): 245-251
    Lin Z H, Dong Y H, Li N, et al. The genetic structure and diversity analysis of different geographical populations of Meretrix meretrix using morphological parameters and AFLP markers[J]. Oceanologia et Limnologia Sinica, 2008, 39(3): 245-251 (in Chinese)
    [39] 林志华, 黄晓婷, 董迎辉, 等. 广西文蛤(Meretrix)的fAFLP及ITS分析[J]. 海洋与湖沼, 2009, 40(1): 33-41
    Lin Z H, Huang X T, Dong Y H, et al. Analysis of Meretrix clams from Guangxi based on fAFLP markers and ITS sequences[J]. Oceanologia et Limnologia Sinica, 2009, 40(1): 33-41 (in Chinese)
    [40] Gu X F, Dong Y H, Yao H H, et al. Microsatellite marker analysis reveals the distinction between the north and south groups of hard clam (Meretrix meretrix) in China[J]. Genetics and Molecular Research, 2015, 14(1): 1210-1219
    [41] 刘博, 邵艳卿, 王侃, 等. 4个缢蛏群体遗传多样性和系统发生关系的微卫星分析[J]. 海洋科学, 2013, 37(8): 96-102
    Liu B, Shao Y Q, Wang K, et al. Microsatellite analysis of genetic diversity and phylogenetic relationship of four different geographical populations of Sinonovacula constricta[J]. Marine Sciences, 2013, 37(8): 96-102 (in Chinese)
    [42] 滕爽爽, 胡高宇, 范建勋, 等. 缢蛏5个群体遗传多样性和遗传分化的SNP分析[J]. 水生生物学报, 2021, 45(4): 861-870
    Teng S S, Hu G Y, Fan J X, et al. Genetic diversity and genetic differentiation analysis of Sinonovacula constricta populations revealed by SNP markers[J]. Acta Hydrobiologica Sinica, 2021, 45(4): 861-870 (in Chinese)
    [43] 牛东红, 陈慧, 王树亮, 等. 我国沿海缢蛏群体遗传结构的mtDNA-CO I分析[J]. 动物学杂志, 2010, 45(2): 11-18
    Niu D H, Chen H, Wang S L, et al. Population genetic structure of Sinonovacula constricta along the coast of China[J]. Chinese Journal of Zoology, 2010, 45(2): 11-18 (in Chinese)
    [44] 李太武, 李成华, 宋林生, 等. 5个泥蚶群体遗传多样性的RAPD分析[J]. 生物多样性, 2003, 11(2): 118-124
    Li T W, Li C H, Song L S, et al. RAPD variation within and among five populations of Tegillarca granosa[J]. Biodiversity Science, 2003, 11(2): 118-124 (in Chinese)
    [45] Dong Y H, Yao H H, Zhou X L, et al. Genetic analysis assessed by microsatellites for a diallel mating design of two geographical stocks of the blood clam Tegillarca granosa[J]. Genes & Genomics, 2018, 40(4): 373-379
    [46] 董迎辉, 林志华, 柴雪良, 等. 文蛤受精及早期胚胎发育过程的细胞学观察[J]. 动物学报, 2007, 53(4): 700-709
    Dong Y H, Lin Z H, Chai X L, et al. Cytological observation on fertilization and early embryonic development in the clam Meretrix meretrix[J]. Acta Zoologica Sinica, 2007, 53(4): 700-709 (in Chinese)
    [47] 董迎辉, 林志华, 柴雪良, 等. 文蛤(Meretrix meretrix)精子的超微结构及精子入卵过程的电镜观察[J]. 海洋与湖沼, 2010, 41(5): 726-732
    Dong Y H, Lin Z H, Chai X L, et al. Electron microscope observation on ultrastructure of spermatozoon and penetration in Meretrix meretrix[J]. Oceanologia et Limnologia Sinica, 2010, 41(5): 726-732 (in Chinese)
    [48] 姚韩韩, 林志华, 董迎辉, 等. 泥蚶受精和早期卵裂过程核行为的细胞学观察[J]. 上海海洋大学学报, 2010, 19(5): 596-600
    Yao H H, Lin Z H, Dong Y H, et al. Cytological observation on nuclear behavior in fertilization and early cleavage in Tegillarca granosa[J]. Journal of Shanghai Ocean University, 2010, 19(5): 596-600 (in Chinese)
    [49] Dong Y H, Yao H H, Lin Z H, et al. The effects of sperm-egg ratios on polyspermy in the blood clam, Tegillarca granosa[J]. Aquaculture Research, 2012, 43(1): 44-52
    [50] 董迎辉, 姚韩韩, 张佩云, 等. 缢蛏受精和早期卵裂过程的细胞学变化观察[J]. 水产学报, 2012, 36(9): 1400-1409
    Dong Y H, Yao H H, Zhang P Y, et al. Cytological observation on fertilization and early cleavage in Sinonovaula constricta[J]. Journal of Fisheries of China, 2012, 36(9): 1400-1409 (in Chinese)
    [51] 吴富村, 张国范, 李莉, 等. 基于边缘检测的高通量贝类外部形态自动测量方法: 中国, CN112444208A[P]. 2021-03-05.
    Wu F C, Zhang G F, Li L, et al. A high-throughput automatic measurement of shellfish external morphology based on edge detection: China, CN112444208A[P]. 2021-03-05.
    [52] 包振民, 邢强, 李仰平, 等. 一种基于扇贝心跳指标的快速选种方法: 中国, CN105191836A[P]. 2015-12-30.
    Bao Z M, Xing Q, Li Y P, et al. A rapid seed selection method based on scallop heartbeat index: China, CN105191836A[P]. 2015-12-30.
    [53] 包振民, 邢强, 李仰平, 等. 一种基于心跳指标的快速评估扇贝抗性的方法: 中国, CN105191837A[P]. 2015-12-30.
    Bao Z M, Xing Q, Li Y P, et al. A rapid method for evaluation of scallop resistance based on heartbeat index: China, CN105191837A[P]. 2015-12-30.
    [54] 包振民, 邢强, 李仰平, 等. 一种利用心跳作为海湾扇贝亲贝选育指标的方法: 中国, CN105165675A[P]. 2015-12-23.
    Bao Z M, Xing Q, Li Y P, et al. A new method for bay scallop heartbeat as broodstock breeding indicators: China, CN105165675A[P]. 2015-12-23.
    [55] 林思恒, 吴富村, 张国范. 高温胁迫下皱纹盘鲍不同养殖群体心率变化比较[J]. 海洋科学, 2016, 40(11): 84-90
    Lin S H, Wu F C, Zhang G F. Variation in cardiac response to thermal stress in two different cultured populations of Pacific abalones[J]. Marine Sciences, 2016, 40(11): 84-90 (in Chinese)
    [56] 沈雅威, 陈楠, 骆轩, 等. 一种用于快速测定鲍耐低氧能力的方法: 中国, CN110276546A[P]. 2019-09-24.
    Shen Y W, Chen N, Luo X, et al. A method for rapid detection of hypoxia tolerance in abalone: China, CN110276546A[P]. 2019-09-24.
    [57] 胡凌威, 孙长森, 董迎辉, 等. 缢蛏(Sinonovacula constricta)心率Arrhenius拐点温度(ABT)及其与生长性状相关和通径分析[J]. 海洋与湖沼, 2021, 52(5): 1265-1272
    Hu L W, Sun C S, Dong Y H, et al. Correlation and regression analysis between the Arrhenius break temperatures (ABT) of heart rate and growth traits of Sinonovacula constricta[J]. Oceanologia et Limnologia Sinica, 2021, 52(5): 1265-1272 (in Chinese)
    [58] 董迎辉, 徐洪强, 莫天宝, 等. 一种蛏类硬壳新品种选育方法: 中国, CN114982681A[P]. 2022-09-02.
    Dong Y H, Xu H Q, Mo T B, et al. A selection method for hard-shelled variety of razor clams: China, CN114982681A[P]. 2022-09-02.
    [59] 包永波, 杨泽鑫, 章伟峰, 等. 一种泥蚶血红蛋白浓度高通量测定方法: 中国, CN113484256A[P]. 2021-10-08.
    Bao Y B, Yang Z X, Zhang W F, et al. A high-throughput method for detection of hemoglobin concentration of blood clam Tegillarca granosa: China, CN113484256A[P]. 2021-10-08.
    [60] Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4): 1819-1829
    [61] Zhang G F, Fang X D, Guo X M, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 2012, 490(7418): 49-54.
    [62] Qi H G, Li L, Zhang G F. Construction of a chromosome-level genome and variation map for the Pacific oyster Crassostrea gigas[J]. Molecular Ecology Resources, 2021, 21(5): 1670-1685
    [63] Wang S, Zhang J B, Jiao W Q, et al. Scallop genome provides insights into evolution of bilaterian karyotype and development[J]. Nature Ecology & Evolution, 2017, 1(5): 0120
    [64] Li Y L, Sun X Q, Hu X L, et al. Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins[J]. Nature Communications, 2017, 8(1): 1721
    [65] Yan X W, Nie H T, Huo Z M, et al. Clam genome sequence clarifies the molecular basis of its benthic adaptation and extraordinary shell color diversity[J]. iScience, 2019, 19: 1225-1237
    [66] Dong Y H, Zeng Q F, Ren J F, et al. The chromosome-level genome assembly and comprehensive transcriptomes of the razor clam (Sinonovacula constricta)[J]. Frontiers in Genetics, 2020, 11: 664
    [67] Ran Z S, Li Z Z, Yan X J, et al. Chromosome-level genome assembly of the razor clam Sinonovacula constricta (Lamarck, 1818)[J]. Molecular Ecology Resources, 2019, 19(6): 1647-1658
    [68] Bao Y B, Zeng Q F, Wang J, et al. Genomic insights into the origin and evolution of molluscan red-bloodedness in the blood clam Tegillarca granosa[J]. Molecular Biology and Evolution, 2021, 38(6): 2351-2365
    [69] Wei M, Ge H X, Shao C W, et al. Chromosome-level clam genome helps elucidate the molecular basis of adaptation to a buried lifestyle[J]. iScience, 2020, 23(6): 101148
    [70] Song H, Guo X M, Sun L N, et al. The hard clam genome reveals massive expansion and diversification of inhibitors of apoptosis in Bivalvia[J]. BMC Biology, 2021, 19(1): 15
    [71] Bai C M, Xin L S, Rosani U, et al. Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C[J]. GigaScience, 2019, 8(7): giz067
    [72] Ning X H, Li X, Wang J, et al. Genome-wide association study reveals E2F3 as the candidate gene for scallop growth[J]. Aquaculture, 2019, 511: 734216
    [73] Peng W Z, Yu F, Wu Y Y, et al. Identification of growth-related SNPs and genes in the genome of the Pacific abalone (Haliotis discus hannai) using GWAS[J]. Aquaculture, 2021, 541: 736820
    [74] He X, Li C Y, Qi H G, et al. A genome-wide association study to identify the genes associated with shell growth and shape-related traits in Crassostrea gigas[J]. Aquaculture, 2021, 543: 736926
    [75] Meng J, Wang W X, Shi R H, et al. Identification of SNPs involved in Zn and Cu accumulation in the Pacific oyster (Crassostrea gigas) by genome-wide association analysis[J]. Ecotoxicology and Environmental Safety, 2020, 192: 110208
    [76] Shi R H, Li C Y, Qi H G, et al. Construction of a high-resolution genetic map of Crassostrea gigas: QTL mapping and GWAS applications revealed candidate genes controlling nutritional traits[J]. Aquaculture, 2020, 527: 735427
    [77] Wang S Y, Wang H Z, Zhao L, et al. Identification of genes associated with carotenoids accumulation in scallop (Patinopecten yessoensis)[J]. Aquaculture, 2022, 550: 737850
    [78] Dou J Z, Li X, Fu Q, et al. Evaluation of the 2b-RAD method for genomic selection in scallop breeding[J]. Scientific Reports, 2016, 6: 19244
    [79] Wang Y F, Sun G D, Zeng Q F, et al. Predicting growth traits with genomic selection methods in zhikong scallop (Chlamys farreri)[J]. Marine Biotechnology, 2018, 20(6): 769-779
    [80] Gutierrez A P, Matika O, Bean T P, et al. Genomic selection for growth traits in Pacific oyster (Crassostrea gigas): potential of low-density marker panels for breeding value prediction[J]. Frontiers in Genetics, 2018, 9: 391
    [81] 于红, 刘欣, 李琪. 基因编辑技术在贝类中的应用进展与展望[J]. 水产学报, 2022, 46(4): 636-643
    Yu H, Liu X, Li Q. Application advances and prospects of genome editing in molluscs[J]. Journal of Fisheries of China, 2022, 46(4): 636-643 (in Chinese)
    [82] Perry K J, Henry J Q. CRISPR/Cas9-mediated genome modification in the mollusc, Crepidula fornicata[J]. Genesis, 2015, 53(2): 237-244
    [83] Crawford K, Quiroz J F D, Koenig K M, et al. Highly efficient knockout of a squid pigmentation gene[J]. Current Biology, 2020, 30(17): 3484-3490.e4
    [84] Huang J F, You W W, Xu Z W, et al. An effective microinjection method and TALEN-mediated genome editing in Pacific abalone[J]. Marine Biotechnology, 2019, 21(4): 441-447
    [85] Yu H, Li H J, Li Q, et al. Targeted gene disruption in Pacific oyster based on CRISPR/Cas9 ribonucleoprotein complexes[J]. Marine Biotechnology, 2019, 21(3): 301-309
    [86] Li H J, Yu H, Du S J, et al. RISPR/Cas9 mediated high efficiency knockout of myosin essential light chain gene in the Pacific oyster (Crassostrea gigas)[J]. Marine Biotechnology, 2021, 23(2): 215-224
    [87] 闫喜武, 霍忠明, 杨凤, 等. 菲律宾蛤仔“斑马蛤”[J]. 中国水产, 2015(9): 52-53
    Yan X W, Huo Z M, Yang F, et al. Ruditapes philippinarum “Banma Ge”[J]. China Fisheries, 2015(9): 52-53 (in Chinese)
    [88] 闫喜武, 霍忠明. 菲律宾蛤仔“斑马蛤2号”[J]. 中国水产, 2022(1): 102-106
    Yan X W, Huo Z M. Ruditapes philippinarum “No. 2 of Banma Ge”[J]. China Fisheries, 2022(1): 102-106 (in Chinese)
    [89] 张跃环, 喻子牛, 秦艳平, 等. 一种通过亲本改良来提高香港牡蛎三倍体生产性能的方法: 中国, CN108040938B[P]. 2020-04-03.
    Zhang Y H, Yu Z N, Qin Y P, et al. A method for improving triploid production performance of Hong Kong oyster by parent improvement: China, CN108040938B[P]. 2020-04-03.
    [90] 张跃环, 喻子牛, 秦艳平, 等. 一种香港牡蛎四倍体幼贝的制备方法: 中国, CN107494358B[P]. 2019-11-01.
    Zhang Y H, Yu Z N, Qin Y P, et al. A preparation method for juveniles of tetraploid Hong Kong oyster: China, CN107494358B[P]. 2019-11-01.
    [91] Wu X W, Zhang Y H, Xiao S, et al. Comparative studies of the growth, survival, and reproduction of diploid and triploid Kumamoto oyster, Crassostrea sikamea[J]. Journal of the World Aquaculture Society, 2019, 50(4): 866-877
    [92] Qin Y P, Zhang Y H, Ma H T, et al. Comparison of the biochemical composition and nutritional quality between diploid and triploid Hong Kong oysters, Crassostrea hongkongensis[J]. Frontiers in Physiology, 2018, 9: 1674
    [93] Qin Y P, Li X Y, Liao Q L, et al. Comparative study on the growth, survival, gonad development and trait segregation of F2 hybrids and their grandparent species (Crassostrea ariakensis and C. hongkongensis)[J]. Aquaculture, 2021, 541: 736757
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑卫卫,徐锡文,陈松林,俄泽琛,刘英杰.大菱鲆MKK基因家族全基因组鉴定及其在生物和非生物应激下的表达分析[J].水产学报,2023,47(1):019109

复制
分享
文章指标
  • 点击次数:484
  • 下载次数: 1155
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-10-10
  • 最后修改日期:2022-11-02
  • 在线发布日期: 2023-01-16
文章二维码