低氧胁迫下鲢miR-17a-5p及其靶基因分析
CSTR:
作者:
基金项目:

国家现代农业产业技术体系专项(CARS-45);湖北省洪山实验室开放课题(2021hskf014);中国水产科学研究院基本科研业务费专项(YFI202211,2020TD33)


Analysis of miR-17a-5p and its target genes in Hypophthalmichthys molitrix under hypoxia stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [58]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了探究miR-17a-5p在鲢低氧胁迫下的功能,在前期鲢small RNA测序的基础上对鲢miR-17a-5p进行靶基因预测及功能富集分析,通过双荧光素酶活性验证其与HIF-1α的靶向关系,并检测低氧胁迫下miR-17a-5p和其靶基因在鲢肝脏、脑、心脏和鳃四个组织中的动态表达特征。结果显示,鲢miR-17a-5p在不同物种间高度保守,预测出381个miR-17a-5p的潜在靶基因显著富集在硫代谢、mTOR信号通路以及萜类骨架的生物合成3个KEGG信号通路上。miR-17a-5p可与HIF-1α mRNA的3′UTR结合,并降低HIF-1α mRNA水平,低氧胁迫下miR-17a-5p的表达呈下降趋势,而HIF-1α表达则呈上升趋势;3个显著富集KEGG通路中的11个miR-17a-5p潜在靶基因在低氧胁迫过程中的不同组织中的表达,尤其是肝脏中的表达,除SGK1外,均呈显著上升趋势。研究表明,低氧胁迫下鲢各组织中miR-17a-5p的表达下调减弱了其对靶基因的抑制作用,进而导致HIF-1α、ddit4和Lrp5等响应低氧胁迫的基因表达上调。本研究为低氧胁迫下鲢miRNA的表达与调控机制提供新见解,也为培育耐低氧的鲢新品系(种)提供了参考。

    Abstract:

    Silver carp (Hypophthalmichthys molitrix) is an important freshwater economic fish in China’s aquaculture industry. In 2020, six species of freshwater farmed fish in China had production greater than a million tons, of which the yield of silver carp was 3.8129 million tons, ranking second. Silver carp is widely distributed in natural waters, and plays a major role in regulating the ecological environment. In the process of H. molitrix culture, hypoxia has become an important factor restricting the increase of its yield. In previous studies, miR-17a-5p was identified and differentially expressed in H. molitrix under hypoxia stress based on the small RNA sequencing. The micro-ribonucleic acids (miRNAs), a class of endogenous and noncoding small RNA, play an important role in biological resistance to environmental stresses. In order to explore the role of miR-17a-5p in H. molitrix under hypoxia, sequence analysis and target gene prediction of miR-17a-5p was performed. The results showed that the miR17a-5p are highly conserved among species, and 381 target genes were identified, including HIF-1α. Dual-luciferase reporter assay results demonstrated that when 293T cells were co-transfected with miR17a-5p mimics and WT-pmirGLO-HIF-1α 3′UTR, the luciferase activity decreased, confirming HIF-1α to be a target gene of miR17a-5p. This conclusion is in agreement with the observation of the increasing trend of HIF-1α alongside the decreasing pattern of miR17a-5p under hypoxic stress in different tissue. KEGG pathway analysis revealed that the target genes were significantly enriched in Sulfur metabolism, mTOR signaling pathway and Terpenoid backbone biosynthesis. The expression of 11 target genes involved in the above three signaling pathways under hypoxia in liver, brain, heart and gill were detected by quantitative real-time PCR. The results showed that the overall trend of increase for the relative expressions of these genes, and upregulation was most pronounced in liver. In this study, we analyzed the bioinformatics of miR-17a-5p, predicted and further identified its target genes, and subjected H. molitrix to different degree of hypoxia stress, revealing that the downregulation of miR-17a-5p expression in H. molitrix under hypoxia stress attenuates its inhibitory effect on its target genes. Our finding provides a new idea for miR-17a-5p regulation of its target genes in H. molitrix under hypoxia stress, and provides a reference for further analysis of the role of miRNAs in the process of hypoxia tolerance of fish.

    参考文献
    [1] Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes[J]. Biochemical Journal, 2008, 413(2): 217-226
    [2] Kyriakis J M, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update[J]. Physiological Reviews, 2012, 92(2): 689-737
    [3] Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions[M]//Seger R. MAP Kinase Signaling Protocols. Totowa: Humana, 2010: 3-38.
    [4] Plotnikov A, Zehorai E, Procaccia S, et al. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2011, 1813(9): 1619-1633
    [5] Widmann C, Gibson S, Jarpe M B, et al. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human[J]. Physiological Reviews, 1999, 79(1): 143-180
    [6] Zheng W W, Xu X W, E Z C, et al. Genome-wide identification of the MAPK gene family in turbot and its involvement in abiotic and biotic stress responses[J]. Frontiers in Marine Science, 2022, 9: 1005401
    [7] de Vantéry Arrighi C, Campana A, Schorderet-Slatkine S. A role for the MEK-MAPK pathway in okadaic acid-induced meiotic resumption of incompetent growing mouse oocytes[J]. Biology of Reproduction, 2000, 63(2): 658-665
    [8] Zou J J, Wang R J, Li R J, et al. The genome-wide identification of mitogen-activated protein kinase kinase (MKK) genes in Yesso scallop Patinopecten yessoensis and their expression responses to bacteria challenges[J]. Fish & Shellfish Immunology, 2015, 45(2): 901-911
    [9] Zhan H S, Yue H, Zhao X, et al. Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L. )[J]. Genes, 2017, 8(10): 284
    [10] Song Q M, Li D Y, Dai Y, et al. Characterization, expression patterns and functional analysis of the MAPK and MAPKK genes in watermelon (Citrullus lanatus)[J]. BMC Plant Biology, 2015, 15: 298
    [11] Liang W W, Yang B, Yu B J, et al. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L. )[J]. BMC Genomics, 2013, 14: 392
    [12] Liu Z Q, Shi L P, Liu Y Y, et al. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum[J]. Frontiers in Plant Science, 2015, 6: 780
    [13] Zhang S Z, Xu R R, Luo X C, et al. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica[J]. Gene, 2013, 531(2): 377-387
    [14] Su Y L, Chen J P, Mo Z Q, et al. A novel MKK gene (EcMKK6) in Epinephelus coioides: identification, characterization and its response to Vibrio alginolyticus and SGIV infection[J]. Fish & Shellfish Immunology, 2019, 92: 500-507
    [15] Fan H D, Li Y D, Yang Q B, et al. Isolation and characterization of a MAPKK gene from Penaeus monodon in response to bacterial infection and low-salinity challenge[J]. Aquaculture Reports, 2021, 20: 100671
    [16] Wang Y, Chen G, Li K Q, et al. A novel MKK gene (AjMKK3/6) in the sea cucumber Apostichopus japonicus: identification, characterization and its response to pathogenic challenge[J]. Fish & Shellfish Immunology, 2017, 61: 24-33
    [17] Yu J J, Li Y, Zhang Z H, et al. Genome-wide identification of MKK and MAPK gene families and their expression analysis under abiotic stress in largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2022, 561: 738688
    [18] Yang X D, Hou Z S, Liu M Q, et al. Identification and characterization of mkk genes and their expression profiles in rainbow trout (Oncorhynchus mykiss) symptomatically or asymptomatically infected with Vibrio anguillarum[J]. Fish & Shellfish Immunology, 2022, 121: 1-11
    [19] 雷霁霖, 刘新富, 关长涛. 中国大菱鲆养殖20年成就和展望——庆祝大菱鲆引进中国20周年[J]. 渔业科学进展, 2012, 33(4): 123-130
    Lei J L, Liu X F, Guan C T. Turbot culture in China for two decades: achievements and prospect[J]. Progress in Fishery Sciences, 2012, 33(4): 123-130 (in Chinese)
    [20] Breitburg D. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries [J]. Estuaries, 2002, 25(4B): 767-81.
    [21] Feng C, Li X H, Sha H, et al. Comparative transcriptome analysis provides novel insights into the molecular mechanism of the silver carp (Hypophthalmichthys molitrix) brain in response to hypoxia stress [J]. Comparative Biochemistry and Physiology D-Genomics & Proteomics, 2022, 41.
    [22]阮雯,纪炜炜,郑亮,等. 鱼类低氧胁迫及营养调控和应对研究进展[J]. 海洋渔业,2020,42(6):11. Ruan W, Ji W W, Zheng L, et al. On hypoxia stress in fish and its nutritional regulation and response[J]. Journal, 2020, 42(6):11(in Chinese).
    [23] Huo D, Sun L, Ru X S, et al. Impact of hypoxia stress on the physiological responses of sea cucumber Apostichopus japonicus: respiration, digestion, immunity and oxidative damage [J]. Peerj, 2018, 6.
    [24] Hou Z S, Wen H S, Li J F, et al. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss) [J]. Science of the Total Environment, 2020, 705.
    [25] Buentello J A, Gatlin D M, Neill W H. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus) [J]. Aquaculture, 2000, 182(3-4): 339-52.
    [26] Jia J Y, Dong C C, Han M Q, et al. Multi-omics perspective on studying reproductive biology in Daphnia sinensis [J]. Genomics, 2022, 114(2).
    [27] Sun S M, Xuan F J, Ge X P, et al. Dynamic mRNA and miRNA expression analysis in response to hypoxia and reoxygenation in the blunt snout bream (Megalobrama amblycephala) [J]. Scientific reports, 2017, 7.
    [28] Sun J L, Zhao L L, He K, et al. MiRNA-mRNA integration analysis reveals the regulatory roles of miRNAs in the metabolism of largemouth bass (Micropterus salmoides) livers during acute hypoxic stress [J]. Aquaculture, 2020, 526.
    [29] Zhang Y, Li S J, Jin P S, et al. Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis [J]. Nature Communications, 2022, 13(1).
    [30] Dunwoodie S L. The Role of Hypoxia in Development of the Mammalian Embryo [J]. Developmental Cell, 2009, 17(6): 755-73.
    [31] Schofield C J, Ratcliffe P J. Oxygen sensing by HIF hydroxylases [J]. Nature Reviews Molecular Cell Biology, 2004, 5(5): 343-54.
    [32] Gl S. Hypoxia-inducible factors in physiology and medicine [J]. D0413066, 2012, (1097-4172 (Electronic)): 399-408.
    [33] Wang Q X, Li X H, Sha H, et al. Identification of microRNAs in silver carp (Hypophthalmichthys molitrix) Response to Hypoxia Stress [J]. Animals, 2021, 11(10).
    [34] Kumar S, Stecher G, Li M, et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms [J]. Molecular Biology and Evolution, 2018, 35(6): 1547-9.
    [35] Schnitzer S E, Schmid T, Jie Z, et al. Inhibition of GSK3beta by indirubins restores HIF-1alpha accumulation under prolonged periods of hypoxia/anoxia [J]. Febs Letters, 2005, 579(2): 529-33.
    [36]周杨,曹子鹏,陈筱鸣,等. 低氧对小鼠海马神经元发育相关分子表达的影响[J]. 神经解剖学杂志,2022,38(4):417-22. Zhou Y, Cao Z, P, Chen X, M, et al. The effects of hypoxia on the expression of moleculas related to neuronal development in murine hippocampal neurons[J]. Journal, 2022, 38(4):417-22(in Chinese).
    [37] 鲍金,刘川川,陈辛玲,等. OPN对低氧诱导的SD大鼠肺动脉平滑肌细胞自噬及增殖能力的影响[J]. 中国高原医学与生物学杂志,2019,40(4):223-31. Bao J, Liu C, C, Chen X, L, et al. Effect of OPN on autophagy and proliferation of pulmonary artery smooth muscle cells underHypoxia condition in SD rats[J]. Journal, 2019, 40(4):223-31(in Chinese).
    [38] Tu Q, Liu X, Yao X, et al. RETSAT associates with DDX39B to promote fork restarting and resistance to gemcitabine based chemotherapy in pancreatic ductal adenocarcinoma [J]. Journal of Experimental & Clinical Cancer Research, 2022, 41(1): 1-22.
    [39] Li W, Xin, Liang S, Wei, Wang H, et al. The effects of chronic hypoxia on thermoregulation and metabolism in phrynocephalus vlangalii [J]. School of Life Science, 2016, (2): 103-11.
    [40] 王嵩,梅林,闫博,等. 生理低氧对人晶状体上皮细胞系基因表达谱的影响[J]. 眼科新进展,2015,35(5):409-12. Wang S, Mei L, Yan B, et al. Effects of physiological hypoxia on gene expression profile of human lens epithelial cells[J]. Journal, 2015, 35(5):409-12(in Chinese).
    [41] Foltyn M, Luger A L, Lorenz N I, et al. The physiological mTOR complex 1 inhibitor DDIT4 mediates therapy resistance in glioblastoma [J]. British Journal of Cancer, 2019, 120(5): 481-487.
    [42] Mai S, Tanaka H, Tanimura A, et al. The clathrin assembly protein PICALM is required for erythroid maturation and transferrin internalization in mice [J]. Plos One, 2012, 7(2): e31854.
    [43] 张维华,於丽明,韩欣欣,等. 低氧对骨骼肌成肌细胞增殖分化的影响及相关机制研究进展[J]. 生理科学进展,2019,50(5):326-32. Zhang W H, Yu L M, Han X X, et al. Research advances on the effects of hypoxia on proliferation and differentiation of skeletal muscle cells and related mechanisms[J]. Journal, 2019, 50(5):326-32(in Chinese).
    [44] 徐倩,杨佳佳,刘志华,等. 低氧和牙周炎对牙周组织中HIF-1α和MMP2表达的影响[J]. 第三军医大学学报,2017,39(7):616-21. Xu Q, Yang J J, Liu Z H, et al. Effect of periodontitis under hypoxia on expression of HIF-1α and MMP2 in rat periodontium[J]. Journal, 2017, 39(7):616-21(in Chinese).
    [45] Saxton R A, Sabatini D M. mTOR signaling in growth, metabolism, and disease [J]. Cell, 2017, 168(6): 960-76.
    [46] Yin S S, Liu L, Gan W J. The roles of post-translational modifications on mTOR signaling [J]. International Journal of Molecular Sciences, 2021, 22(4).
    [47] Tse A C K, Li J W, Wang S Y, et al. Hypoxia alters testicular functions of marine medaka through microRNAs regulation [J]. Aquatic Toxicology, 2016, 180: 266-73.
    [48] Lai K P, Li J W, Tse A C K, et al. Hypoxia alters steroidogenesis in female marine medaka through miRNAs regulation [J]. Aquatic Toxicology, 2016, 172: 1-8.
    [49] Benita Y, Kikuchi H, Smith A D, et al. An integrative genomics approach identifies hypoxia inducible factor-1 (HIF-1)-target genes that form the core response to hypoxia [J]. Nucleic Acids Research, 2009, 37(14): 4587-602.
    [50] Tiranti V, Viscomi C, Hildebrandt T, et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy [J]. Nature Medicine, 2009, 15(2): 200-5.
    [51] Reppert S M, Weaver D R, Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses [J]. Neuron, 1994, 13(5): 1177-85.
    [52] Marutani E, Morita M, Hirai S, et al. Sulfide catabolism ameliorates hypoxic brain injury [J]. Nat Commun, 2021, 12(1): 3108.
    [53]吴龙华,梁化亮,戈贤平,等. 鱼类雷帕霉素靶蛋白信号通路生物学功能的研究进展[J]. 动物营养学报,2021,33(10):5486-96. Wu L H, Liang H L, Ge X P, et al. Research progress on biological function of target of rapamycin signaling pathway in fish[J]. Journal, 2021, 33(10):5486-96(in Chinese).
    [54] Shoshani T, Faerman A, Mett I, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis [J]. Molecular and Cellular Biology, 2002, 22(7): 2283-93.
    [55] Wyant G A, Abu-Remaileh M, Wolfson R L, et al. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient [J]. Cell, 2017, 171(3): 642.
    [56] Wu X Y, Chen J Y, Liu C D, et al. Slc38a9 deficiency induces apoptosis and metabolic dysregulation and leads to premature death in zebrafish [J]. International Journal of Molecular Sciences, 2022, 23(8).
    [57] Ju S, Lim L, Wi K, et al. LRP5 regulates HIF-1 alpha stability via interaction with PHD2 in ischemic myocardium [J]. International Journal of Molecular Sciences, 2021, 22(12).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李晓晖,冯翠,王巧欣,邹桂伟,梁宏伟.低氧胁迫下鲢miR-17a-5p及其靶基因分析[J].水产学报,2023,47(1):019610

复制
分享
文章指标
  • 点击次数:479
  • 下载次数: 1123
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-10-30
  • 最后修改日期:2022-12-03
  • 在线发布日期: 2023-01-16
文章二维码