中国南海南沙群岛海域鸢乌贼耳石微量元素组成特性
CSTR:
作者:
作者单位:

1.上海海洋大学海洋科学学院,上海 201306;2.上海海洋大学,自然资源部海洋生态监测与修复技术重点实验室,上海 201306;3.上海海洋大学,国家远洋渔业工程技术研究中心,上海 201306

通讯作者:

陆化杰 (照片),从事头足类渔业生态学研究,E-mail:hjlu@shou.edu.cn

LU Huajie. E-mail: hjlu@shou.edu.cn

基金项目:

国家重点研发计划(2019YFD090402);国家自然科学基金(NSFC41506184)


Trace elements in statoliths of Sthenoteuthis oualaniensis in Nansha Islands of the South China Sea
Author:
Affiliation:

1.College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;2.Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, Ministry of Nature Resources, Shanghai Ocean University, Shanghai 201306, China;3.National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai 201306, China

Fund Project:

National Key R & D Program of China (2019YFD090402); National Natural Science Foundation of China (NSFC41506184)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解鸢乌贼耳石微量元素组成特征,根据2017年3—5月我国灯光罩网渔船于中国南海南沙群岛海域采集的1 002尾鸢乌贼样本,利用激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)分析了17枚鸢乌贼耳石微量元素的组成及分布。结果显示,南沙群岛海域鸢乌贼耳石主要由56种微量元素组成,含量最多的前10种元素依次为Ca、Sr、Na、P、Si、K、Mg、Fe、Ba和B。方差分析结果显示,不同性别间,前10种元素Ca、Sr、Na、P、Si、K、Mg、Fe、Ba、B的分布均无显著差异;不同孵化期的群体间Ca、Sr、Na、P、Si、K、Mg、Fe、Ba、B的分布也不存在显著差异,但不同耳石部位间Si、K、Fe无显著差异,而Ca、Sr、Na、P、Mg、Ba、B则存在显著差异。研究表明,不同的生境会导致鸢乌贼耳石微量元素组成的不同,且在不同的生长阶段,鸢乌贼耳石微量元素组成也存在差异,但不同性别鸢乌贼耳石微量元素组成基本一致。本研究进一步证实了利用微量元素分布特性鉴定头足类种群和研究洄游路线的可行性。

    Abstract:

    In order to explore the trace element composition characteristics of Sthenoteuthis oualaniensis, the composition and distribution of trace elements in 17 statoliths of S. oualaniensis collected in the Nansha islands waters of the South China Sea during March to May by light falling-net vessels in 2017 were analyzed with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results showed that the statolith of S. oualaniensis contained 56 elements, and calcium (Ca), strontium (Sr), sodium (Na), phosphorus (P), silicon (Si), potassium (K), magnesium (Mg), iron (Fe), barium (Ba) and boron (B) were the ten most abundant elements. The analysis of variance (ANOVA) showed that there was no significant difference in the distribution of all ten most abundant elements between different sexes and hatching groups. There were significant differences in the contents of Ca, Sr, Na, P, Mg, Ba and B, but no significant difference in the contents of Si, K and Fe between different areas of the statolith. The study showed that the trace element composition of S. oualaniensis varied in different habitats and in different growth stages, but the trace element composition of S. oualaniensis of different sexes was basically the same, which further confirmed the feasibility of using trace element distribution characteristics to identify cephalopod populations and study migratory routes.

    参考文献
    [1] 董正之. 中国动物志. 软体动物门, 头足纲[M]. 北京: 科学出版社, 1988: 77-80. Dong Z Z. Fauna Sinica. Phylum Mollusca, Class Cephalopode[M]. Beijing: Science Press, 1988: 77-80 (inChinese).
    [2] Roper C F E, Sweeney M J, Nauen C E. FAO species catalogue vol 3 cephalopods of the world: an annotated and illustrated catalogue of species of interest to fisheries[C]. FAO Fisheries Synopsis, 1984, 3: 180-181.
    [3] 陆化杰, 张旭, 童玉和. 中国南海西沙群岛海域鸢乌贼耳石微结构及生长特性[J]. 水产学报, 2020, 44(4): 657-666.
    [4] 王尧耕, 陈新军. 世界大洋性经济柔鱼类资源及其渔业[M]. 北京: 海洋出版社, 2005. Wang Y G, Chen X J. The world’s marine commercial Ommastrephidae resources and fisheries[M]. Beijing: Maritime Press, 2005 (in Chinese).
    [5] 颜云榕, 冯波, 卢伙胜, 等. 南沙群岛北部海域鸢乌贼(Sthenoteuthis oualaniensis) 夏季渔业生物学研究[J]. 海洋与湖沼, 2012, 43(6): 1177-1187.
    [6] Parry M. Feeding behavior of two ommastrephid squids Ommastrephes bartramii and Sthenoteuthis oualaniensis off Hawaii[J]. Marine Ecology Progress Series, 2006, 318: 229-235.
    [7] Chen X J, Liu B L, Tian S Q, et al. Fishery biology of purpleback squid, Sthenoteuthis oualaniensis, in the northwest Indian Ocean[J]. Fisheries Research, 2007, 83(1): 98-104.
    [8] Ikeda Y, Arai N, Kidokoro H, et al. Strontium: calcium ratios in statoliths of Japanese common squid Todarodes pacificus (Cephalopoda: Ommastrephidae) as indicators of migratory behavior[J]. Marine Ecology Progress Series, 2003, 251: 169-179.
    [9] Arkhipkin A I, Bizikov V A. Role of the statolith in functioning of the acceleration receptor system in squids and sepioids[J]. Journal of Zoology, 2000, 250(1): 31-35.
    [10] Radtke R L. Chemical and structural characteristics of statoliths from the short-finned squid Illex illecebrosus[J]. Marine Biology, 1983, 76(1): 47-54.
    [11] Arkhipkin A I. Statoliths as ‘black boxes’ (life recorders) in squid [J]. Marine and Freshwater Research, 2005, 56 (5): 573-583.
    [12] Chen X J, Lu H J, Liu B L, et al. Age, growth and population structure of jumbo flying squid, Dosidicus gigas, based on statolith microstructure off the EEZ of Chilean waters[J]. Journal of the Marine Biological Association of the UK, 2011, 91(1): 229-235.
    [13] 陆化杰, 陈新军. 利用耳石微结构研究西南大西洋阿根廷滑柔鱼的日龄、生长与种群结构[J]. 水产学报, 2013, 36(7): 1049-1056. Lu H J, Chen X J. Age, growth and population structure of Illex argentinus based on statolith microstructure in Southwest Atlantic Ocean[J]. Journal of Fisheries of China, 2013, 36(7): 1049-1056 (in Chinese).
    [14] Kazutaka M, Taro O. Age, growth and hatching season of the diamond squid Thysanoteuthis rhombus estimated from statolith analysis and catch data in the western Sea of Japan[J]. Fisheries Research, 2006, 80(2-3): 211-22.
    [15] Thorrold S R, Jones C M, Campana S E. Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus)[J]. Limnol Oceanogr, 1997, 42(1): 102-111.
    [16] 陆化杰, 陈子越, 童玉和, 等. 中国南海西沙群岛海域鸢乌贼耳石元素组成[J]. 应用生态学报, 2019, 30(2): 653-660. Lu H J, Chen Z Y, Tong Y H, et al. Element composition in the statoliths of Sthenoteuthis oualaniensis squid in Xisha islands waters of South China Sea[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 653-660 (in Chinese).
    [17] 陆化杰, 刘必林, 陈新军, 等. 智利外海茎柔鱼耳石微量元素研究[J]. 海洋渔业, 2013, 35(3): 269-277. Lu H J, Liu B L, Chen X J, et al. Trace elements in the statolith of Dosdicus gigas in the high sea waters off Chile[J]. Marine Fisheries, 2013, 35(3): 269-277 (in Chinese).
    [18] 陆化杰, 陈新军, 方舟. 西南大西洋阿根廷滑柔鱼耳石元素组成[J]. 生态学报, 2015, 35(2): 297-305. Lu H J, Chen X J, Fang Z. An analysis of element composition in the statoliths of Illex argentisnus squid in the South West Atlantic Ocean[J]. Acta co logica Sinica 2015, 35(2): 297-305 (in Chinese).
    [19] 陆化杰, 陈新军, 马金. 西北太平洋柔鱼耳石微量元素[J]. 应用生态学报, 2014, 25(8): 2411-2417. Lu H J, Chen X J, Ma J. Trace elements in the statoliths of neon flying squid, Ommastrephes batramii in the Northwest Pacific Ocean[J]. Chinese Journal of Applied Ecology, 2014, 25(8): 2411-2417 (in Chinese).
    [20] 陆化杰. 西南大西洋阿根廷滑柔鱼渔业生物学及资源评估[D]. 上海: 上海海洋大学, 2012. Lu H J. Fishery biology and stock assessment for Illex argentinus squid in the southwest Atlantic Ocean[D]. Shanghai: Shanghai Ocean University, 2012 (in Chinese).
    [21] Zumholz K, Klügel A, Hansteen T H, et al. Statolith microchemistry traces the environmental history of the boreoatlantic armhook squid Gonatus fabricii[J]. Marine Ecology Progress Series, 2007, 333: 195-204.
    [22] Lipiński M R, Underhill L G. Sexual maturation in squid: quantum or continuum[J]. South African Journal of Marine Science, 1995, 15(1): 207-223.
    [23] Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of analytical atomic spectrometry, 2008, 23: 1093-1101.
    [24] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43.
    [25] Zheng S, Hu Z C, Shi Y F. Accurate determination of Ni, Ca and Mn in olivine by EPMA and LA-ICP-MS[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(1): 220-224.
    [26] 刘玉, 王雪辉, 杜飞雁, 等. 南海鸢乌贼耳石微量元素差异性分析[J]. 南方水产科学, 2019, 15(5): 15-24.Liu Y, Wang X H, Du F Y, et al. Difference analysis of trace elements in statolith of Sthenoteuthis oualaniensisin South China Sea[J]. South China Fisheries Science,2019, 15(5): 15-24 (in Chinese).
    [27] Avigliano E, Ivanovic M, Prandoni N, et al. Statolith chemistry as a stock tag in the Argentine shortfin squid Illex argentinus[J]. Regional Studies in Marine Science, 2020, 38: 101355.
    [28] Lea D W, Shen G T, Boyle E A. Coralline barium records temporal variability in Equatorial Pacific upwelling[J]. Nature, 1989, 340(6232): 373-376.
    [29] Stewart J F, Malcolm T M, Robert W, et al. Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan[J]. Earth and Planetary Science Letters, 1999, 172(3-4): 221-238.
    [30] Jones J B, Arkhipkin A I, Marriott A L, et al. Reprint of using statolith elemental signatures to confirm ontogenetic migrations of the squid Doryteuthis gahi around the Falkland Islands (Southwest Atlantic) [J]. Chemical Geology, 2019, 526: 165-174.
    [31] Zumholz K. The influence of environmental factors on the micro-chemical composition of cephalopod statoliths. PhD thesis[D] . Kiel: University of Kiel, 2005.
    [32] Yuzuru, Ikeda, Nobuaki, et al. Preliminary report on PIXE analysis for trace elements of Octopus dofleini statoliths[J]. Fisheries Science, 1999, 65(1):161-162.
    [33] Ikeda Y, Arai N, Sakamoto W, et al. Microchemistry of the statoliths of the Japanese common squid Todarodes pacificus with special reference to its relation to the vertical temperature profiles of squid habitat[J]. Fisheries Science, 1998, 64(2): 179-184.
    [34]马金. 北太平洋柔鱼耳石微结构及微化学研究[D]. 上海: 上海海洋大学, 2010. Ma J. Microstructure and microchemistry of statolith for neon flying squid, Ommastrephes batramii in the North Pacific Ocean[D]. Shanghai: Shanghai Ocean University, 2010 (in Chinese).
    [35] Bettencourt V, Guerra A. Growth increments and biomineralization process in cephalopod statoliths[J]. Journal of Experimental Marine Biology and Ecology, 2000, 248(2): 191-205.
    [36] Zumholz K, Hansteen T H, Piatkowski U, et al. Influence of temperature and salinity on the trace element incorporation into statoliths of the common cuttlefish (Sepia officinalis)[J]. Marine Biology, 2007, 151(4): 1321-1330.
    [37] Durholtz M D, Lipinski M R, Przybylowicz W J, et al. Nuclear microprobe mapping of statoliths of Chokka squid Loligo vulgaris reynaudii d'Orbigny, 1845[J]. Biological Bulletin, 1997, 193(2): 125-140.
    [38] Ikeda Y, Arai N, Sakamoto W, et al. Preliminary report on PIXE analysis for trace elements of Octopus dofleini statoliths[J]. Fisheries Science, 1999, 65: 161-162.
    [39] Arkhipkin A I, Campana S E, Fitzgerald J, et al. Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi)[J]. Canadian Journal of Fisheries & Aquatic Sciences, 2004, 61 (7): 1212-1224.
    [40] Lipinski M R. The deposition of statoliths: a working hypothesis[J]. Recent Advances in Cepalopod Fisheries Biology, 1993: 241-262.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陆化杰,赵懋林,刘凯,任品.中国南海南沙群岛海域鸢乌贼耳石微量元素组成特性[J].水产学报,2023,47(7):1~10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-11
  • 最后修改日期:2023-05-14
  • 录用日期:2023-06-01
  • 在线发布日期: 2023-07-11
  • 出版日期: 2023-07-01
文章二维码