海洋捕捞技术、渔具渔法研究进展与趋势
CSTR:
作者:
中图分类号:

S 973

基金项目:

青岛海洋科技中心专项 (2022QNLM030002-2);上海市科学技术委员会青年科技英才扬帆计划 (23YF1459700)


Review of marine fishing equipment and technology
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [157]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    综合应用船舶、机械、信息、新材料等技术,从海洋中捕捞经济渔获物并综合利用,是现代海洋捕捞业的主要特征。海洋捕捞技术的发展和创新,对保障我国食物安全、保护近海生态与资源、实现渔民增收和新渔村建设、推动渔业产业结构调整和转型、维护我国海洋权益等方面具有非常重要的作用。本文通过简析海洋捕捞渔场探测、渔具渔法与高效自动化辅渔助渔技术等方面的研究进展,提出海洋捕捞技术的重点发展方向,以期为我国海洋捕捞实现节能高效、生态友好和资源可持续利用,海洋捕捞技术升级和产业高质量发展提供参考。

    Abstract:

    The modern marine fishing industry utilizes advanced technologies, including ships, machinery, information systems, and new materials to fish marine catch and to process and sell fishing products directly. The development and innovation of marine fishing equipment and technology play a crucial role in ensuring food security, protecting the coastal ecology and resources, achieving fishermen's income growth and new fishing village construction, promoting the adjustment and transformation of the fishery industry structure, and maintaining our country's marine rights and interests. This article focuses on the research progress in areas such as acoustic detection for marine fishing, innovation in marine fishing gear, and efficient intelligent fishing methods. It proposes development directions for marine fishing equipment and technology. These efforts aim to provide a reference for our country's marine fishing industry to achieve energy-efficient, eco-friendly, and sustainable resource use.

    参考文献
    [1] FAO. The state of world fisheries and aquaculture 2022[R]. Rome: FAO, 2022.
    [2] 李红艳, 姜晓东, 王颖, 等. 基于灰色预测模型的我国海洋渔业发展趋势分析[J]. 渔业信息与战略, 2021, 36(2): 88-95
    Li H Y, Jiang X D, Wang Y, et al. Analysis on development trend of marine fishery in China based on grey prediction model[J]. Fishery Information & Strategy, 2021, 36(2): 88-95 (in Chinese)
    [3] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023.
    Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries. 2023 China fishery statistical yearbook[M]. Beijing: China Agriculture Press, 2023 (in Chinese).
    [4] 李大海, 韩立民. 陆海统筹构建粮食安全保障新体系研究[J]. 社会科学辑刊, 2019(6): 109-117
    Li D H, Han L M. Research on building a new system of food security guarantee through land and sea coordination[J]. Social Science Journal, 2019(6): 109-117 (in Chinese)
    [5] 翟璐, 孙兆群, 王波, 等. 基于灰色预测模型的我国海洋渔业发展趋势研究[J]. 江苏农业科学, 2019, 47(13): 342-346
    Zhai L, Sun Z Q, Wang B, et al. Study on development of China’s marine fisheries based on GM (1, 1) model[J]. Jiangsu Agricultural Sciences, 2019, 47(13): 342-346 (in Chinese)
    [6] 丁燕楠, 高小玲. 全球海洋渔业产业格局与投资趋势分析[J]. 海洋开发与管理, 2016, 33(9): 59-64
    Ding Y N, Gao X L. The Industrial structure and investment trends of global marine fisheries[J]. Ocean Development and Management, 2016, 33(9): 59-64 (in Chinese)
    [7] 刘洋, 裴兆斌, 姜义颖. 新常态下我国“蓝色粮仓”建设研究[J]. 海洋开发与管理, 2017, 34(12): 3-8
    Liu Y, Pei Z B, Jiang Y Y. The construction of ‘Blue Granary’ in new normal[J]. Ocean Development and Management, 2017, 34(12): 3-8 (in Chinese)
    [8] 刘子飞, 孙慧武, 岳冬冬, 等. 中国新时代近海捕捞渔业资源养护政策研究[J]. 中国农业科技导报, 2018, 20(12): 1-8
    Liu Z F, Sun H W, Yue D D, et al. Research on China's maintance policy for marie capture fishery resources in the new era[J]. Journal of Agricultural Science and Technology, 2018, 20(12): 1-8 (in Chinese)
    [9] 龙进霞, 陈佳怡, 徐汉祥, 等. 基于绿色发展的我国近海渔业可持续性战略思考[J]. 海洋开发与管理, 2021, 38(11): 11-17
    Long J X, Chen J Y, Xu H X, et al. Strategic thinking on sustainability of inshore fishery resources in China based on the concept of green development[J]. Ocean Development and Management, 2021, 38(11): 11-17 (in Chinese)
    [10] 张兰婷, 王波, 秦宏. 论我国“蓝色粮仓”发展模式的构建[J]. 山东大学学报(哲学社会科学版), 2018(5): 36-44
    Zhang L T, Wang B, Qin H. On the construction of development mode of Blue Granary in China[J]. Journal of Shandong University (Philosophy and Social Sciences), 2018(5): 36-44 (in Chinese)
    [11] 李涵, 韩立民. 远洋渔业的产业特征及其政策支持[J]. 中国渔业经济, 2015, 33(6): 68-73
    Li H, Han L M. Characteristics and policy support of distant fishery[J]. Chinese Fisheries Economics, 2015, 33(6): 68-73 (in Chinese)
    [12] 刘禹希, 陈琛, 林香红. 南极渔业资源开发利用现状及启示[J]. 中国渔业经济, 2023, 41(2): 117-126
    Liu Y X, Chen C, Lin X H. Current situation and enlightenment of exploitation and utilization of Antarctic fishery resources[J]. Chinese Fisheries Economics, 2023, 41(2): 117-126 (in Chinese)
    [13] 史磊, 秦宏, 刘龙腾. 世界海洋捕捞业发展概况、趋势及对我国的启示[J]. 海洋科学, 2018, 42(11): 126-134
    Shi L, Qin H, Liu L T. Development situation and trend of world marine fishing industry and its enlightenment to China[J]. Marine Sciences, 2018, 42(11): 126-134 (in Chinese)
    [14] 曲石. 从考古发现看我国古代捕鱼的起源与发展[J]. 农业考古, 1986(2): 220-225
    Qu S. On the Origin and development of ancient fishing in China from archaeological discoveries[J]. Agricultural Archaeology, 1986(2): 220-225 (in Chinese)
    [15] 宋兆麟. 古老的捕鱼技巧[J]. 化石, 1979(2): 23-24
    Song Z L. Ancient fishing techniques[J]. Fossils, 1979(2): 23-24 (in Chinese)
    [16] 安家瑗. 小孤山发现的骨鱼镖——兼论与新石器时代骨鱼镖的关系[J]. 人类学学报, 1991, 10(1): 12-18
    An J Y. A harpoon unearthed in Xiaogushan site——also on the relations with the detachable head harpoon of Neolithic[J]. Acta Anthropologica Sinica, 1991, 10(1): 12-18 (in Chinese)
    [17] 方海, 阮雯, 纪炜炜, 等. 世界古代渔业史源和发展概述[J]. 渔业信息与战略, 2019, 34(3): 180-187
    Fang H, Ruan W, Ji W W, et al. On historical sources of world ancient fishery and its development[J]. Fishery Information & Strategy, 2019, 34(3): 180-187 (in Chinese)
    [18] 施鼎钧. 辉煌的中国渔业史[J]. 北京水产, 1999(6): 39-40
    Shi D J. The glorious history of Chinese fisheries[J]. Journal of Beijing Fisheries, 1999(6): 39-40 (in Chinese)
    [19] 沈汉祥. V·D·式拖网的历史及在我国的应用[J]. 中国水产, 1989(11): 42-43
    Shen H X. The history and application of V. D. trawl in China[J]. China Fisheries, 1989(11): 42-43 (in Chinese)
    [20] 陈龙, 贾复. 远洋拖网渔船的演变发展过程[J]. 现代渔业信息, 1996, 11(3): 1-6
    Chen L, Jia F. The development process of distant trawlers[J]. Modern Fishery Information, 1996, 11(3): 1-6 (in Chinese)
    [21] 施彬. 电子技术在海洋渔业方面的应用[J]. 电子技术, 1964(3): 11-14
    Shi B. The application of electronic technology in marine fisheries[J]. Electronic Technology, 1964(3): 11-14 (in Chinese)
    [22] 顾嗣明. 水平探鱼仪在东、黄海渔场适用性的探讨[J]. 渔业现代化, 1979(3): 26-29,41
    Gu S M. Discussion on the applicability of horizontal fish probe in fishing grounds of the East and Yellow Seas[J]. Fishery Modernization, 1979(3): 26-29,41 (in Chinese)
    [23] 王鲁民. 超强纤维材料的试验研究及其在渔业中的应用前景[J]. 水产学报, 2000, 24(5): 480-484
    Wang L M. Advances in the experiment study of ultra-high strength fibers and its application in fishery[J]. Journal of Fisheries of China, 2000, 24(5): 480-484 (in Chinese)
    [24] 徐皓, 张建华, 丁建乐, 等. 国内外渔业装备与工程技术研究进展综述(续)[J]. 渔业现代化, 2010, 37(3): 1-5,19
    Xu H, Zhang J H, Ding J L, et al. The review of the research progress of fishery equipment and engineering technology at home and abroad (Continued)[J]. Fishery Modernization, 2010, 37(3): 1-5,19 (in Chinese)
    [25] 吴文燕. 基于适应性管理的个别可转让配额制度研究[D]. 青岛: 中国海洋大学, 2013.
    Wu W Y. The Study on Individual transferable quota system based on adaptive management[D]. Qingdao: Ocean University of China, 2013 (in Chinese).
    [26] 陈亚. 个别可转让配额制度在我国海洋渔业捕捞管理中的应用研究[D]. 上海: 上海海洋大学, 2021.
    Chen Y. Application of individual transferable quota system in marine fishery catching management in China[D]. Shanghai: Shanghai Ocean University, 2021 (in Chinese).
    [27] 黄洪亮, 冯超, 李灵智, 等. 当代海洋捕捞的发展现状和展望[J]. 中国水产科学, 2022, 29(6): 938-949
    Huang H L, Feng C, Li L Z, et al. The development status and prospect of contemporary marine fisheries[J]. Journal of Fishery Sciences of China, 2022, 29(6): 938-949 (in Chinese)
    [28] 汤振明, 张勋, 黄洪亮, 等. 我国海洋捕捞高能耗原因分析与对策建议[J]. 中国水产, 2010(6): 24-25
    Tang Z M, Zhang X, Huang H L, et al. Analysis of the causes of high energy consumption in marine fishing in China and suggestions for countermeasures[J]. China Fisheries, 2010(6): 24-25 (in Chinese)
    [29] Food and Agriculture Organization of the United Nations FAO. The state of world fisheries and aquaculture 2018[R]. Rome: FAO, 2018: 2-120.
    [30] Watson J W, Seidel W R. Evaluation of techniques to decrease sea turtle mortalities in the southeastern United States shrimp fishery[R]. ICES CM, 1980: 1-8.
    [31] Seidel W R, McVea Jr C. Development of a sea turtle excluder shrimp trawl for the southeast US penaeid shrimp fishery[M]//Biology and conservation of sea turtles. Washington, DC, USA: Smithsonian Institution Press, 1982: 497-502.
    [32] Balazs G H. Assessment of Hawaiian green turtles utilising coastal foraging pastures at Pala’au, Molokai[C]//Proceedings of a workshop on assessing abundance and trends for in-water sea turtle populations. NOAA Technical Memorandum NMFS-SEFSC-445, 2000: 42-44.
    [33] Watling L, Norse E A. Disturbance of the seabed by mobile fishing gear: A comparison to forest clearcutting[J]. Conservation Biology, 1998, 12(6): 1180-1197
    [34] Krost P, Bernhard M, Werner F, et al. Otter-trawl tracks in Kiel Bay (Western Baltic) mapped by side-scan sonar[J]. Meeresforsch, 1990, 32: 344-353
    [35] Riemann B, Hoffmann E. Ecological consequences of dredging and bottom trawling in the Limfjord, Denmark[J]. Marine Ecology Progress Series, 1991, 69: 171-178
    [36] Revill A S, Jennings S. The capacity of benthos release panels to reduce the impacts of beam trawls on benthic communities[J]. Fisheries Research, 2005, 75(1-3): 73-85
    [37] Kaiser M J, Bullimore B, Newman P, et al. Catches in ‘ghost fishing’ set nets[J]. Marine Ecology Progress Series, 1996, 145: 11-16
    [38] Matsuoka T, Nakashima T, Nagasawa N. A review of ghost fishing: scientific approaches to evaluation and solutions[J]. Fisheries Science, 2005, 71(4): 691-702
    [39] 中国水产科学研究院科技情报研究所. 国外渔业概况[M]. 北京: 科学出版社, 1991: 31-33.
    Institute of Information Technology, Chinese Academy of Fishery Sciences. Overview of foreign fisheries[M]. Beijing: Science Press, 1991: 31-33 (in Chinese).
    [40] Van Marlen B. Trawl with dyneema give 15 percent energy saving[J]. World Fishing, 1990, 39(10): 50
    [41] Gudmundur G. Iceland’s massive mid-water trawl[J]. Fishing News International, 1993, 32(2): 9
    [42] Van Beelen. New-type netting in big demand[J]. Fishing News International, 1995, 34(2): 32-33
    [43] Gramaxo J. Higher price but a big return[J]. Fishing News International, 1995, 34(3): 36
    [44] Kim S, Kim P, Lim J, et al. Use of biodegradable driftnets to prevent ghost fishing: physical properties and fishing performance for yellow croaker[J]. Animal Conservation, 2016, 19(4): 309-319
    [45] Kim M K, Yun K C, Kang G D, et al. Biodegradable resin composition and fishing net produced from same: US, 2017112111[P]. 2017-04-27.
    [46] Kim S, Park S W, Lee K. Fishing performance of environmentally friendly tubular pots made of biodegradable resin (PBS/PBAT) for catching the conger eel Conger myriaster[J]. Fisheries Science, 2014, 80(5): 887-895
    [47] Kim S, Park S, Lee K. Fishing performance of an Octopus minor net pot made of biodegradable twines[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2014, 14(1): 21-30
    [48] Grimaldo E, Herrmann B, Su B, et al. Comparison of fishing efficiency between biodegradable gillnets and conventional nylon gillnets[J]. Fisheries Research, 2019, 213: 67-74
    [49] 岳冬冬, 王鲁民, 张勋, 等. 我国海洋捕捞装备与技术发展趋势研究[J]. 中国农业科技导报, 2013, 15(6): 20-26
    Yue D D, Wang L M, Zhang X, et al. The development trends of marine fishing equipment and technology in China[J]. Journal of Agricultural Science and Technology, 2013, 15(6): 20-26 (in Chinese)
    [50] 杨飞, 张敏, 石建高, 等. 渔用可降解材料的研究进展与展望[J]. 海洋渔业, 2019, 41(4): 503-512
    Yang F, Zhang M, Shi J G, et al. Progress on research of degradable materials for fishing[J]. Marine Fisheries, 2019, 41(4): 503-512 (in Chinese)
    [51] 东海水产研究所. “远洋捕捞成套渔具装备”入选2020中国农业农村10项重大新装备[J]. 水产科技情报, 2021, 48(1): 60
    East China Sea Fisheries Research Institute. The "complete set of fishing gear and equipment for deep-sea fishing" was selected as one of the 10 major new equipment for agriculture and rural areas in China in 2020[J]. Fisheries Science & Technology Information, 2021, 48(1): 60 (in Chinese)
    [52] Kajikawa Y, Tokai T, Hu F X. Modeling of available size selectivity of the SURF-BRD for shrimp beam trawl[J]. Fisheries Science, 2013, 79(6): 879-894
    [53] Isaksen B, Valdemarsen J W, Larsen R B, et al. Reduction of fish by-catch in shrimp trawl using a rigid separator grid in the aft belly[J]. Fisheries Research, 1992, 13(3): 335-352
    [54] Broadhurst M K, Kennelly S J, O'Doherty G. Technical note: specifications for the construction and installation of two by-catch reducing devices (BRDs) used in New South Wales prawn-trawl fisheries[J]. Marine and Freshwater Research, 1997, 48(6): 485-489
    [55] Silva C N S, Broadhurst M K, Dias J H, et al. The effects of Nordmøre-grid bar spacings on catches in a Brazilian artisanal shrimp fishery[J]. Fisheries Research, 2012, 127-128: 188-193
    [56] Herrmann B, Sistiaga M, Larsen R B, et al. Understanding sorting grid and codend size selectivity of Greenland halibut (Reinhardtius hippoglossoides)[J]. Fisheries Research, 2013, 146: 59-73
    [57] Isaksen B, Gamst K, Kvalsvik K, et al. Comparison of selectivity and user properties between Sort-X and single grid for two-panel bottom trawl for cod (Gadus morhua)[C]//Proceedings of the ICES FTFB WG Meeting. La Coruna, 1998.
    [58] Tringali L S. Biología y pesca de la merluza del Mar Argentino[R]. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero, 2012.
    [59] Smartrawl project by fisheries innovation and sustainability[EB/OL].https://fisorg.uk/smartrawl/.
    [60] Deep vision delivers image processing- and computer vision solutions for efficient and sustainable fishing[EB/OL]. http://www.deepvision.no.
    [61] Sullivan B J, Kibel B, Kibel P, et al. At‐sea trialling of the Hookpod: a ‘one-stop’ mitigation solution for seabird bycatch in pelagic longline fisheries[J]. Animal Conservation, 2018, 21(2): 159-167
    [62] Poisson F, Budan P, Coudray S, et al. New technologies to improve bycatch mitigation in industrial tuna fisheries[J]. Fish and Fisheries, 2022, 23(3): 545-563
    [63] Lopez J, Ferarios J M, Santiago J, et al. Evaluating potential biodegradable twines for use in the tropical tuna FAD fishery[J]. Fisheries Research, 2019, 219: 105321
    [64] Moreno G, Orue B, Restrepo V. Pilot project to test biodegradable ropes at FADs in real fishing conditions in the western Indian Ocean[J]. Collect. Vol. Sci. Pap. ICCAT, 2018, 74(5): 2199-2208
    [65] Zudaire I, Moreno G, Murua J, et al. Biodegradable drifting fish aggregating devices: current status and future prospects[J]. Marine Policy, 2023, 153: 105659
    [66] 宋学锋, 陈雪忠, 黄洪亮, 等. 东海区底拖网对小黄鱼的选择性研究[J]. 上海海洋大学学报, 2015, 24(3): 449-456
    Song X F, Chen X Z, Huang H L, et al. Selectivity of Parimichthys polyactis of bottom trawl in the East China Sea[J]. Journal of Shanghai Ocean University, 2015, 24(3): 449-456 (in Chinese)
    [67] 黄洪亮, 唐峰华, 陈雪忠, 等. 夏季东海区带鱼的网具选择性试验研究[J]. 农业资源与环境学报, 2016, 33(5): 433-442
    Huang H L, Tang F H, Chen X Z, et al. Nets selectivity of capsule size diamond mesh of Trichiurus haumela in East China Sea during summer[J]. Journal of Agricultural Resources and Environment, 2016, 33(5): 433-442 (in Chinese)
    [68] 尤宗博, 赵宪勇, 李显森, 等. 黄海双船变水层拖网网囊的网目选择性研究[J]. 水产科学, 2017, 36(4): 436-442
    You Z B, Zhao X Y, Li X S, et al. Selectivity of cod-end mesh of pair-trawlers in the Yellow Sea[J]. Fisheries Science, 2017, 36(4): 436-442 (in Chinese)
    [69] 孙满昌, 张健, 樊伟. 吕四渔场虾桁拖网最小网目尺寸的研究[J]. 海洋渔业, 2002, 24(3): 120-124
    Sun M C, Zhang J, Fan W. A study on minimum mesh size of shrimp beam trawling on Lüsi fishing grounds[J]. Marine Fisheries, 2002, 24(3): 120-124 (in Chinese)
    [70] 张旭丰, 杨吝, 谭永光, 等. 方目网囊对蓝圆鲹和多齿蛇鲻的选择性比较[J]. 广东海洋大学学报, 2002, 22(3): 26-32
    Zhang X F, Yang L, Tan Y G, et al. Comparison of selectivity of square mesh codend on Decapterus maruadsi and Saurida tumbil[J]. Journal of Zhanjiang Ocean University, 2002, 22(3): 26-32 (in Chinese)
    [71] 杨炳忠, 杨吝, 谭永光, 等. 南海区虾拖网方目与菱目混合网囊渔获性能初步研究[J]. 海洋科学, 2017, 41(1): 57-64
    Yang B Z, Yang L, Tan Y G, et al. Preliminary study of catching performance of a combined diamond- and square-mesh cod-end of a shrimp beam trawl in the northern South China Sea[J]. Marine Sciences, 2017, 41(1): 57-64 (in Chinese)
    [72] 宋学锋, 陈雪忠, 李灵智, 等. 东海区方形目与菱形目拖网网囊对小黄鱼的选择性研究[J]. 海洋渔业, 2017, 39(1): 100-109
    Song X F, Chen X Z, Li L Z, et al. Selectivity of diamond and square mesh codends in the bottom-trawl fishery for Larimichthys polyactis in the East China Sea[J]. Marine Fisheries, 2017, 39(1): 100-109 (in Chinese)
    [73] 张健, 王忠秋, 张新峰, 等. Y型幼鱼释放装置在张网渔具中的应用初探[J]. 海洋渔业, 2016, 38(1): 66-73
    Zhang J, Wang Z Q, Zhang X F, et al. Preliminary study on Y-shaped exclusion device for juvenile fish in Chinese stow net[J]. Marine Fisheries, 2016, 38(1): 66-73 (in Chinese)
    [74] 孙满昌, 姚来富. 桁拖网作业中鱼虾分隔的初步试验研究[J]. 海洋渔业, 1998(3): 111-115
    Sun M C, Yao L F. Preliminary experimental studies on the separation of shrimp from fish in beam trawling[J]. Marine Fisheries, 1998(3): 111-115 (in Chinese)
    [75] 罗炎标, 张健, 孙满昌. 大鹏湾捕虾拖网渔获分隔试验的效果分析[J]. 南方水产, 2007, 3(1): 14-19
    Luo Y B, Zhang J, Sun M C. Preliminary study on separator shrimp trawl in Dapeng Gulf[J]. South China Fisheries Science, 2007, 3(1): 14-19 (in Chinese)
    [76] 张健, 孙满昌, 彭永章, 等. 桁拖网渔具分隔网片对虾类的分隔效率[J]. 中国水产科学, 2008, 15(5): 845-852
    Zhang J, Sun M C, Peng Y Z, et al. Separating efficiency of separator panels rigged in beam trawls for shrimps[J]. Journal of Fishery Sciences of China, 2008, 15(5): 845-852 (in Chinese)
    [77] 张健, 白伦. 桁拖网渔具分隔网片对蟹类的分隔效果[J]. 海洋渔业, 2013, 35(2): 217-223
    Zhang J, Bai L. Efficiency of separator panels in beam trawls for crabs[J]. Marine Fisheries, 2013, 35(2): 217-223 (in Chinese)
    [78] 张健, 石建高, 张鹏, 等. 桁拖网渔具刚性栅栏对虾类的分隔性能[J]. 上海水产大学学报, 2008, 17(6): 726-733
    Zhang J, Shi J G, Zhang P, et al. Separating performance for shrimps of sorting grid rigged in beam trawls[J]. Journal of Shanghai Fisheries University, 2008, 17(6): 726-733 (in Chinese)
    [79] 张健, 张鹏, 孙满昌, 等. 桁拖网渔具刚性栅栏对鱼类的分隔效率研究[J]. 海洋与湖沼, 2009, 40(4): 511-517
    Zhang J, Zhang P, Sun M C, et al. Fish separating efficiency of sorting grid rigged in beam trawls[J]. Oceanologia et Limnologia Sinica, 2009, 40(4): 511-517 (in Chinese)
    [80] Wang Z Q, Tang H, Xu L X, et al. A review on fishing gear in China: selectivity and application[J]. Aquaculture and Fisheries, 2022, 7(4): 345-358
    [81] 徐皓, 陈家勇, 方辉, 等. 中国海洋渔业转型与深蓝渔业战略性新兴产业[J]. 渔业现代化, 2020, 47(3): 1-9
    Xu H, Chen J Y, Fang H, et al. Chinese marine fishery transformation and strategic emerging industry of deep ocean fishery[J]. Fishery Modernization, 2020, 47(3): 1-9 (in Chinese)
    [82] 宗艳梅, 李国栋, 谌志新, 等. 圆柱阵多波束渔用声呐波束形成性能分析[J]. 渔业现代化, 2020, 47(6): 66-73
    Zong Y M, Li G D, Chen Z X, et al. Analysis of beamforming performance of cylindrical array multi-beam fishery sonar[J]. Fishery Modernization, 2020, 47(6): 66-73 (in Chinese)
    [83] 宗艳梅, 魏珂, 李国栋, 等. 海洋渔业声学装备关键技术研究进展[J]. 渔业现代化, 2021, 48(3): 28-35
    Zong Y M, Wei K, Li G D, et al. Research progress on key technologies of marine fishery acoustic equipment[J]. Fishery Modernization, 2021, 48(3): 28-35 (in Chinese)
    [84] Llorens S, Pérez-Arjona I, Soliveres E, et al. Detection and target strength measurements of uneaten feed pellets with a single beam echosounder[J]. Aquacultural Engineering, 2017, 78: 216-220
    [85] 张慧杰, 危起伟, 杨德国. 回声探测仪的发展趋势及渔业应用[J]. 水利渔业, 2008, 28(1): 9-13
    Zhang H J, Wei Q W, Yang D G. Development trend of echosounders and their application in fisheries[J]. Journal of Hydroecology, 2008, 28(1): 9-13 (in Chinese)
    [86] 张同伟, 秦升杰, 唐嘉陵, 等. 典型分裂波束声学探测系统及其应用[J]. 舰船科学技术, 2019, 41(2): 131-134
    Zhang T W, Qin S J, Tang J L, et al. Typical split-beam echosounder and its application[J]. Ship Science and Technology, 2019, 41(2): 131-134 (in Chinese)
    [87] 李斌, 陈国宝, 郭禹, 等. 南海中部海域渔业资源时空分布和资源量的水声学评估[J]. 南方水产科学, 2016, 12(4): 28-37
    Li B, Chen G B, Guo Y, et al. Hydroacoustic assessment of spatial-temporal distribution and biomass of fishery resources in the central South China Sea[J]. South China Fisheries Science, 2016, 12(4): 28-37 (in Chinese)
    [88] Simmonds J, MacLennan D. Fisheries acoustics: theory and practice[M]. 2nd ed. Oxford: Blackwell Science Ltd, 2005: 227-228.
    [89] 胡健辉, 王艳, 赵欢, 等. 分裂波束鱼探仪换能器的旁瓣级控制[J]. 声学与电子工程, 2016(4): 35-37
    Hu J H, Wang Y, Zhao H, et al. Sidelobe level control of split beam fish detector transducer[J]. Acoustics and Electronics Engineering, 2016(4): 35-37 (in Chinese)
    [90] 吴陈波, 谌志新, 李国栋, 等. 宽带分裂波束探鱼仪探测性能预报建模及仿真分析[J]. 渔业现代化, 2020, 47(3): 72-79
    Wu C B, Chen Z X, Li G D, et al. Modeling and simulation analysis of detection performance prediction of wideband split-beam fish finder[J]. Fishery Modernization, 2020, 47(3): 72-79 (in Chinese)
    [91] 钱韬. 线阵分裂波束处理技术在水声探测中的应用[J]. 声学技术, 2015, 34(6): 551-555
    Qian T. Application of split-beam processing of line array in underwater acoustic detection[J]. Technical Acoustics, 2015, 34(6): 551-555 (in Chinese)
    [92] Williamson B J, Fraser S, Blondel P, et al. Multisensor acoustic tracking of fish and seabird behavior around tidal turbine structures in Scotland[J]. IEEE Journal of Oceanic Engineering, 2017, 42(4): 948-965
    [93] Melvin G D. Observations of in situ Atlantic bluefin tuna (Thunnus thynnus) with 500-kHz multibeam sonar[J]. ICES Journal of Marine Science, 2016, 73(8): 1975-1986
    [94] 张波. 鱼群声散射模型及其仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
    Zhang B. Research of fish school acoustic scattering model and its simulation[D]. Harbin: Harbin Engineering University, 2009 (in Chinese).
    [95] 杜伟东, 李海森, 陈宝伟, 等. 一种基于声散射特性的有鳔鱼特征获取方法[J]. 应用声学, 2014, 33(6): 505-511
    Du W D, Li H S, Chen B W, et al. Features acquisition of fish with swim bladder based on acoustic scattering characteristics[J]. Journal of Applied Acoustics, 2014, 33(6): 505-511 (in Chinese)
    [96] 中国水产科学研究院渔业机械仪器研究所. 我国首台全方位数字多波束渔用声呐顺利完成海试并交付使用[J]. 水产科技情报, 2022, 49(6): 381-382
    Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences. China's first omnidirectional digital multi-beam fishing sonar has successfully completed sea trials and been delivered for use[J]. Fisheries Science & Technology Information, 2022, 49(6): 381-382 (in Chinese)
    [97] 贺波. 世界渔业捕捞装备技术现状及发展趋势[J]. 中国水产, 2012(5): 43-45
    He B. Current status and development trends of fishing equipment technology in world fisheries[J]. China Fisheries, 2012(5): 43-45 (in Chinese)
    [98] 张静. 国内外远洋渔业捕捞装备与工程技术研究进展综述[J]. 科技创新导报, 2018, 15(10): 22,24
    Zhang J. Summary of research progress on fishing equipment and engineering technology for deep-sea fisheries at home and abroad[J]. Science and Technology Innovation Herald, 2018, 15(10): 22,24 (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王鲁民,王忠秋.海洋捕捞技术、渔具渔法研究进展与趋势[J].水产学报,2023,47(11):119716

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-19
  • 最后修改日期:2023-11-06
  • 在线发布日期: 2023-11-18
文章二维码