MiR-130c-5p靶向乌鳢水泡病毒g基因抑制病毒增殖
CSTR:
作者:
中图分类号:

Q 786;S 942.5

基金项目:

中国水产科学研究院珠江研究所重点实验室开放课题(20220103);武汉海关科研项目(2023WK11);国家自然科学基金(32303068)


MiR-130c-5p targets the snakehead vesicular virus g gene to inhibit viral proliferation
Author:
Fund Project:

Open Project of Key Laboratory of Pearl River Research Institute, Chinese Academy of Fisheries Sciences; Scientific Research Program of Wuhan Customs; National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [1]
  • | | |
  • 文章评论
    摘要:

    为了研究miR-130c-5p在乌鳢水泡病毒(snakehead vesiculovirus, SHVV)感染中潜在靶基因g的靶向关系以及对病毒复制的影响,本研究以斑点叉尾鮰卵巢(channel catfish ovary, CCO)为实验材料,通过实时荧光定量PCR (quantitative real-time PCR, qRT-PCR)和免疫印迹(Western blot)技术测定SHVV不同感染时间和感染剂量条件下,病毒基因水平和蛋白水平以及miR-130c-5p变化情况。此外,将SHVV的g基因上miR-130c-5p对应的靶序列克隆到质粒pmirGLO,构建质粒pmirGLO-G用于双荧光素酶报告实验进行靶基因验证。结果显示,随着SHVV感染时间及剂量的不断增加,miR-130c-5p和g基因的表达水平都显著上调。进一步实验证明,miR-130c-5p类似物和pmirGLO-G质粒共转染可显著抑制荧光素酶活性强度,而转染miR-130c-5p抑制剂则明显上调了pmirGLO-G报告载体的荧光信号。此外,miR-130c-5p的过表达显著降低了病毒g基因的mRNA及蛋白表达,而抑制miR-130c-5p的表达则上调了g基因的mRNA及蛋白的表达水平。研究结果表明,miR-130c-5p通过靶向SHVV的g基因,引起G蛋白的降解,从而抑制SHVV的增殖。本研究结果为理解microRNA调控SHVV的致病机制提供了重要基础,为抗SHVV疫苗等药物的研发提供了理论支持。

    Abstract:

    In order to investigate the targeting relationship of miR-130c-5p to the potential target gene g in snakehead vesiculovirus (SHVV) infection and its effect on viral replication, the changes of viral gene and protein levels and miR-130c-5p in SHVV were determined in this study by quantitative real-time PCR (qRT-PCR) and Western blot techniques using channel catfish ovary (CCO) as experimental materials. In addition, the target sequence corresponding to miR-130c-5p on the g gene of SHVV was cloned into the plasmid pmirGLO, and the plasmid pmirGLO-G was constructed for dual luciferase reporter assay for target gene verification. The results showed that the expression levels of miR-130c-5p and g genes were significantly up-regulated with the increasing time and dose of SHVV infection. Further experiments showed that co-transfection of miR-130c-5p mimic and pmirGLO-G plasmid significantly inhibited luciferase activity, while transfection of miR-130c-5p inhibitor significantly up-regulated the fluorescence signal of pmirGLO-G reporter vector. In addition, overexpression of miR-130c-5p significantly reduced the mRNA and protein expression of the viral g gene, while inhibition of miR-130c-5p up-regulated the mRNA and protein expression levels of the g gene. The results showed that miR-130c-5p inhibited the proliferation of SHVV by targeting the g gene of SHVV and causing the degradation of G protein. The results of this study provide an important basis for understanding the pathogenic mechanism of microRNA regulation of SHVVV, and provide theoretical support for the development of anti-SHVV vaccines and other drugs.

    参考文献
    [1] Tang X L, Fu J H, Yao Y, et al. Identification and characterization of immune-related microRNAs in hybrid snakehead (Channa maculata♀×Channa argus♂) after treated by Echinacea purpurea (Linn. ) Moench[J]. Fish & Shellfish Immunology, 2023, 135: 108653,
    [2] Qin X M, Feng S S, Zhang Y W, et al. Leader RNA regulates snakehead vesiculovirus replication via interacting with viral nucleoprotein[J]. RNA Biology, 2021, 18(4): 537-546,
    [3] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023.
    Fisheries and Fisheries Administration of the Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, Chinese Society of Fisheries. 2023 China fisheries statistical yearbook[M]. Beijing: China Agriculture Press, 2023(in Chinese).
    [4] Qin X M, Jiang N Y, Zhu J J, et al. Snakehead vesiculovirus hijacks SH3RF1 for replication via mediating K63-linked ubiquitination at K264 of the phosphoprotein[J]. International Journal of Biological Macromolecules, 2024, 255: 128201,
    [5] Hegazy A M, Chen N, Lin H Z, et al. Induction of apoptosis in SSN-1cells by snakehead fish vesiculovirus (SHVV) via matrix protein dependent intrinsic pathway[J]. Fish & Shellfish Immunology, 2021, 113: 24-34,
    [6] Zhang C, Li N Q, Fu X Z, et al. MiR-214 inhibits snakehead vesiculovirus (SHVV) replication by targeting host GS[J]. Fish & Shellfish Immunology, 2019, 84: 299-303,
    [7] Bergeron H C, Tripp R A. RSV replication, transmission, and disease are influenced by the RSV G protein[J]. Viruses, 2022, 14(11): 2396,
    [8] Vlachava V M, Seirafian S, Fielding C A, et al. HCMV-secreted glycoprotein gpUL4 inhibits TRAIL-mediated apoptosis and NK cell activation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(49): e2309077120.
    [9] 刘力, 李健, 乔文涛, 等. MicroRNA在病毒感染调控作用中的研究进展[J]. 病毒学报, 2009, 25(6): 485-489.
    Liu L, Li J, Qiao W T, et al. Research progress on the regulational role of MicroRNA in virus infection[J]. Chinese Journal of Virology, 2009, 25(6): 485-489 (in Chinese).
    [10] Zhang L W, Xu S N, Zhang Z L, et al. Transcriptomic profiling and characterization of microRNAs in Macrobrachium rosenbergii potentially involved in immune response to Enterobacter cloacae infection[J]. Microbial Pathogenesis, 2023, 183: 106291,
    [11] Donnelly B F, Yang B, Grimme A L, et al. The developmentally timed decay of an essential microRNA family is seed-sequence dependent[J]. Cell Reports, 2022, 40(6): 111154,
    [12] Yang X Y, Liang Y R, Bamunuarachchi G, et al. miR-29a is a negative regulator of influenza virus infection through targeting of the frizzled 5 receptor[J]. Archives of Virology, 2021, 166(2): 363-373,
    [13] Patil R N, Karpe Y A. Uncovering the roles of miR-214 in hepatitis E virus replication[J]. Journal of Molecular Biology, 2020, 432(19): 5322-5342,
    [14] Wang J C, Yin G, Bian H, et al. LncRNA XIST upregulates TRIM25 via negatively regulating miR-192 in hepatitis B virus-related hepatocellular carcinoma[J]. Molecular Medicine, 2021, 27(1): 41,
    [15] Zhang L, Ma J F, Pan X H, et al. LncRNA MIR99AHG enhances adipocyte differentiation by targeting miR-29b-3p to upregulate PPARγ[J]. Molecular and Cellular Endocrinology, 2022, 550: 111648,
    [16] Shi N, Zhang S, Guo YD, et al. CircRNA_0050463 promotes influenza A virus replication by sponging miR-33b-5p to regulate EEF1A1[J]. Veterinary Microbiology, 2021, 254: 108995,
    [17] Yang QR, Li YH, Wang Y, et al. The circRNA circSIAE inhibits replication of coxsackie virus B3 by targeting miR-331-3p and thousand and one amino-acid kinase 2[J]. Frontiers in Cellular and Infection Microbiology, 2022, 11: 779919,
    [18] Zeng Z, Xia L X, Fan S Y, et al. Circular RNA CircMAP3K5 acts as a MicroRNA-22-3p sponge to promote resolution of intimal hyperplasia Via TET2-mediated smooth muscle Cell differentiation[J]. Circulation, 2021, 143(4): 354-371,
    [19] Feng S S, Su J G, Lin L, et al. Development of a reverse genetics system for snakehead vesiculovirus (SHVV)[J]. Virology, 2019, 526: 32-37,
    [20] Liu X D, Tu J G, Yuan J F, et al. Identification and characterization of MicroRNAs in snakehead fish cell line upon snakehead fish vesiculovirus infection[J]. International Journal of Molecular Sciences, 2016, 17(2): 154,
    [21] Qin X M, Zhang Y A, Tu J G. p38MAPK- and GSK3-mediated phosphorylation of snakehead vesiculovirus phosphoprotein at threonine 160 facilitates viral replication[J]. Journal of Virology, 2023, 97(5): e0040423,
    [22] Kiel C, Strunz T, Hasler D, et al. Seed sequence polymorphism rs2168518 and allele-specific target gene regulation of hsa-miR-4513[J]. Human Molecular Genetics, 2022, 31(6): 875-887,
    [23] Liu X D, Wen Y, Hu X Q, et al. Breaking the host range: mandarin fish is susceptible to a vesiculovirus derived from snakehead fish[J]. Journal of General Virology, 2015, 96(4): 775-781,
    [24] Yi S F, Wu Y J, Gu X, et al. Infection dynamic of Micropterus salmoides rhabdovirus and response analysis of largemouth bass after immersion infection[J]. Fish & Shellfish Immunology, 2023, 139: 108922,
    [25] Saenz-Pipaon G, Dichek D A. Targeting and delivery of microRNA-targeting antisense oligonucleotides in cardiovascular diseases[J]. Atherosclerosis, 2023, 374: 44-54,
    [26] Su Y H, Lin T, Liu C, et al. microRNAs, the link between dengue virus and the host genome[J]. Frontiers in Microbiology, 2021, 12: 714409,
    [27] Guo Y J, Xu X Y, Tang T, et al. miR-505 inhibits replication of Borna disease virus 1 via inhibition of HMGB1-mediated autophagy[J]. Journal of General Virology, 2022, 103(1),doi: 10.1099/jgv.0.001713.
    [28] Gao Y, Yong F, Yan M L, et al. MiR-361 and miR-34a suppress foot-and-mouth disease virus proliferation by activating immune response signaling in PK-15 cells[J]. Veterinary Microbiology, 2023, 280: 109725,
    [29] Shi X B, Yang Y H, Zhang X Z, et al. miR-541-3p promoted porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) replication by targeting interferon regulatory factor 7[J]. Viruses, 2022, 14(1): 126,
    [30] Sun P F, Wang J Q, Ilyasova T, et al. The function of miRNAs in the process of kidney development[J]. Non-coding RNA Research, 2023, 8(4): 593-601,
    [31] Mebatsion T, Weiland F, Conzelmann K K. Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G[J]. Journal of Virology, 1999, 73(1): 242-250,
    [32] Chen S Y, Deng Y, Pan D L. MicroRNA regulation of human herpesvirus latency[J]. Viruses, 2022, 14(6): 1215,
    [33] Zhang C, Yi L Z, Feng S S, et al. MicroRNA miR-214 inhibits snakehead vesiculovirus replication by targeting the coding regions of viral N and P[J]. Journal of General Virology, 2017, 98(7): 1611-1619,
    [34] Wu Y C, Yue Y, Xiong S D. Cardiac miR-19a/19b was induced and hijacked by CVB3 to facilitate virus replication via targeting viral genomic RdRp-encoding region[J]. Antiviral Research, 2023, 217: 105702,
    [35] Shafaati M, Jamalidoust M, Kargar M, et al. Downregulation of hepatitis C virus replication by miR-196a using lentiviral vectors[J]. Microbiology and Immunology, 2021, 65(4): 161-170,
    [36] Liang R Y, Liang L, Zhao J J, et al. SP1/miR-92a-1-5p/SOCS5: a novel regulatory axis in feline panleukopenia virus replication[J]. Veterinary Microbiology, 2022, 273: 109549,
    [37] Jafarzadeh A, Naseri A, Shojaie L, et al. MicroRNA-155 and antiviral immune responses[J]. International Immunopharmacology, 2021, 101: 108188,
    [38] Lv J N, Li J Q, Cui Y B, et al. Plasma MicroRNA signature panel predicts the immune response after antiretroviral therapy in hiv-infected patients[J]. Frontiers in Immunology, 2021, 12: 753044,
    [39] Liu X, Guo J W, Lin X C, et al. Macrophage NFATc3 prevents foam cell formation and atherosclerosis: evidence and mechanisms[J]. European Heart Journal, 2021, 42(47): 4847-4861,
    [40] Bouvet M, Voigt S, Tagawa T, et al. Multiple viral microRNAs regulate interferon release and signaling early during infection with epstein-barr virus[J]. mBio, 2021, 12(2): e03440-20,
    [41] Xian X, Cai L L, Li Y, et al. Neuron secrete exosomes containing miR-9-5p to promote polarization of M1 microglia in depression[J]. Journal of Nanobiotechnology, 2022, 20(1): 122,
    [42] Zhang Y, Yang Y J, Guo J, et al. miR-146a enhances regulatory T-cell differentiation and function in allergic rhinitis by targeting STAT5b[J]. Allergy, 2022, 77(2): 550-558,
    [43] Zhao C X, Yan Z X, Wen J J, et al. CircEAF2 counteracts Epstein-Barr virus-positive diffuse large B-cell lymphoma progression via miR-BART19-3p/APC/β-catenin axis[J]. Molecular Cancer, 2021, 20(1): 153,
    [44] McGinnes Cullen L, Luo B, Wen Z Y, et al. The respiratory syncytial virus (RSV) G protein enhances the immune responses to the RSV F protein in an enveloped virus-like particle vaccine candidate[J]. Journal of Virology, 2023, 97(1): e0190022,
    [45] 朱曜良. 乌鳢水泡病毒G蛋白的胞内相互作用蛋白筛选及其功能研究[D]. 武汉: 华中农业大学, 2022.
    Zhu Y L. Screening and function analysis of intracellular interaction protein for snakehead fish vesiculovirus glycoprotein[D]. Wuhan: Huazhong Agricultural University, 2022 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

季艳,周旋,于永耀,刘晓丹,张驰,林强. MiR-130c-5p靶向乌鳢水泡病毒g基因抑制病毒增殖[J].水产学报,2024,48(5):059402

复制
分享
文章指标
  • 点击次数:268
  • 下载次数: 673
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-01-06
  • 最后修改日期:2024-04-06
  • 录用日期:2024-04-10
  • 在线发布日期: 2024-05-22
文章二维码