深海微小杆菌的分离鉴定及其对长牡蛎的致病性
作者:
中图分类号:

S 944.4+1

基金项目:

国家自然科学基金 (32222086,32173002);国家贝类产业技术体系(CARS-49);兴辽英才计划 (XLYC2203087);大连市优秀青年科技人才项目 (2022RY01)


Isolation and identification of Exiguobacterium profundum and its pathogenicity analysis on Crassostrea gigas
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [85]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    目的 从患有脓包病的长牡蛎中分离并鉴定致病菌,系统分析其形态特征、生理生化特征及致病机制,为长牡蛎脓包病的防治提供科学依据。方法 从辽宁省大连市庄河某养殖区采集了患有脓包病的长牡蛎,利用16S rDNA测序及生物信息学技术鉴定出一株深海微小杆菌,并对其进行药敏实验和溶血实验,进一步结合人工感染实验、高通量测序和实时荧光定量PCR技术分析感染后长牡蛎鳃组织中炎症相关基因表达及细菌群落结构变化情况。结果 分离菌株在2216 E琼脂培养基中形成直径为1.0~1.5 mm的乳黄色菌落,形态均一稳定;对头孢哌酮、青霉素和阿莫西林等抗生素高度敏感;在28 °C条件下表现出显著的β溶血活性。人工感染实验显示,深海微小杆菌感染导致长牡蛎外套膜出现脓包,鳃表面出现白色斑点,同时伴有肿胀,感染后长牡蛎鳃组织中Cgtlr3、Cgap-1、Cgcaspase-3、Cgil-17-5和Cgil-17-6基因的mRNA表达水平显著升高。高通量测序分析显示,感染后长牡蛎鳃组织中变形菌门和弯曲杆菌门的相对丰度增加,弧菌科的相对丰度升高。结论 深海微小杆菌促进鳃组织炎症相关基因的表达,同时提高了鳃组织中弧菌的丰度导致长牡蛎发病,是诱发长牡蛎脓包病的潜在病原之一。研究结果为贝类病害的预防和控制提供了一定的数据支撑。

    Abstract:

    In the present study, a potential pathogenic bacterium was isolated and identified from Pacific oysters (Crassostrea gigas) with abscess disease collected from a culture area in Zhuanghe, Dalian, Liaoning. Exiguobacterium profundum was identified in the lesions of the diseased C. gigas using 16S rDNA sequencing and bioinformatics techniques. Antimicrobial susceptibility and hemolysis experiments were conducted. The expression of inflammation-related genes and changes in bacterial community structure in the gill tissues following E. profundum infection were further analyzed using artificial infection experiments, high-throughput sequencing technology, and quantitative real-time PCR. The results showed that the strain formed creamy-yellow colonies with a diameter of 1.0-1.5 mm on marine agar 2216 E, exhibiting uniform and stable morphology. E. profundum demonstrated high sensitivity to cefoperazone, penicillin, and amoxicillin. It exhibited significant β-hemolytic activity at 28 °C. Artificial infection experiments revealed the presence of abscesses on the mantle and white spots and swelling on the gills, with significant increases in the mRNA expression levels of Cgtlr3, Cgap-1, Cgcaspase-3, Cgil-17-5 and Cgil-17-6 in the gills post-infection. High-throughput sequencing analysis showed an increase in the relative abundance of Proteobacteria and Campylobacterota, as well as an induction in the relative abundance of Vibrionaceae in the gill tissues following E. profundum infection. These findings suggest that E. profundum may contribute to the pathogenesis of C. gigas by promoting the mRNA expression of inflammation-related genes and inducing the abundance of Vibrio spp. in the gill tissue. This study identifies E. profundum as a potential pathogen of C. gigas with abscess disease, providing valuable data support for the prevention and control of shellfish diseases.

    参考文献
    [1] 白昌明, 辛鲁生, 王崇明. 软体动物疱疹病毒及其对贝类养殖产业的危害[J]. 渔业科学进展, 2021, 42(1): 214-226.
    Bai C M, Xin L S, Wang C M. Malacoherpesviruses and their associated damages to mollusk aquaculture industry[J]. Progrees in Fishery Sciences, 2021, 42(1): 214-226 (in Chinese).
    [2] 张颖雪, 苏洁, 樊景凤, 等. 海水养殖贝类弧菌病流行暴发及其环境影响因素研究进展[J]. 海洋环境科学, 2020, 39(3): 480-487.
    Zhang Y X, Su J, Fan J F, et al. Outbreaks of vibriosis in mariculture shellfish and its research progress[J]. Marine Environmental Science, 2020, 39(3): 480-487 (in Chinese).
    [3] Gómez-León J, Villamil L, Lemos M L, et al. Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities[J]. Applied and Environmental Microbiology, 2005, 71(1): 98-104.
    [4] Jones J L, Lüdeke C H M, Bowers J C, et al. Biochemical, serological, and virulence characterization of clinical and oyster Vibrio parahaemolyticus isolates[J]. Journal of Clinical Microbiology, 2012, 50(7): 2343-2352.
    [5] Kesarcodi-Watson A, Kaspar H, Lategan M J, et al. Two pathogens of GreenshellTM mussel larvae, Perna canaliculus: Vibrio splendidus and a V. coralliilyticus/neptunius-like isolate[J]. Journal of Fish Diseases, 2009, 32(6): 499-507.
    [6] Lacoste A, Jalabert F, Malham S, et al. A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France)[J]. Diseases of Aquatic Organisms, 2001, 46(2): 139-145.
    [7] Yang B, Zhai S Y, Li X, et al. Identification of Vibrio alginolyticus as a causative pathogen associated with mass summer mortality of the Pacific oyster (Crassostrea gigas) in China[J]. Aquaculture, 2021, 535: 736363.
    [8] Labreuche Y, Soudant P, Gonçalves M, et al. Effects of extracellular products from the pathogenic Vibrio aestuarianus strain 01/32 on lethality and cellular immune responses of the oyster Crassostrea gigas[J]. Developmental & Comparative Immunology, 2006, 30(4): 367-379.
    [9] 沈晓盛, 蔡友琼, 房文红, 等. 养殖牡蛎体内检出坎氏弧菌的鉴定[J]. 微生物学报, 2005, 45(2): 177-180.
    Shen X S, Cai Y Q, Fang W H, et al. Identification of Vibrio campbellii isolated from cultured pacific oyster[J]. Acta Microbiologica Sinica, 2005, 45(2): 177-180 (in Chinese).
    [10] Gooch J A, DePaola A, Kaysner C A, et al. Evaluation of two direct plating methods using nonradioactive probes for enumeration of Vibrio parahaemolyticus in oysters[J]. Applied and Environmental Microbiology, 2001, 67(2): 721-724.
    [11] Yue X, Liu B Z, Xiang J H, et al. Identification and characterization of the pathogenic effect of a Vibrio parahaemolyticus-related bacterium isolated from clam Meretrix meretrix with mass mortality[J]. Journal of Invertebrate Pathology, 2010, 103(2): 109-115.
    [12] 李启蒙, 朱贝贝, 方皓, 等. 一起菲律宾蛤仔出血病病原的鉴定[J]. 山东畜牧兽医, 2017, 38(10): 7-8.
    Li Q M, Zhu B B, Fang H, et al. Identification of the pathogen of a Venerupis philippinarum haemorrhagic disease[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2017, 38(10): 7-8 (in Chinese).
    [13] Kang C H, Shin Y J, Jang S C, et al. Antimicrobial susceptibility of Vibrio alginolyticus isolated from oyster in Korea[J]. Environmental Science and Pollution Research, 2016, 23(20): 21106-21112.
    [14] Liu R, Qiu L M, Yu Z A, et al. Identification and characterisation of pathogenic Vibrio splendidus from Yesso scallop (Patinopecten yessoensis) cultured in a low temperature environment[J]. Journal of Invertebrate Pathology, 2013, 114(2): 144-150.
    [15] 滕炜鸣, 李文姬, 张明, 等. 虾夷扇贝脓包病病原的分离、鉴定与致病性[J]. 水产学报, 2012, 36(6): 937-943.
    Teng W M, Zhang M, Yu Z A, et al. Isolation, identification and pathogenicity of Vibrio chagasii from Patinopecten yessoensis[J]. 2011. Journal of Fisheries of China, 2012, 36(6): 937-943 (in Chinese).
    [16] Geng Z, Gao L, Yu Z, et al. The isolation and identification of a pathogenic Vibrio neocaledonicus from Yesso scallop (Patinopecten yessoensis)[J]. ISJ-Invertebrate Survival Journal, 2022, 19(1): 91-104.
    [17] 李琪, 于瑞海, 孔令锋, 等. 长牡蛎高产优质新品种培育与应用[R]. 中国海洋大学,2021.
    Li Q, Yu R H, Kong L F, et al. Breeding and application of new oyster varieties with high yield and high quality[R]. Ocean University of China, 2021 (in Chinese).
    [18] 于潇, 卢钰博, 刘嘉卓, 等. 牡蛎的生态养殖[J]. 水产养殖, 2020, 41(4): 1-3,7.
    Yu X, Lu Y B, Liu J Z, et al. Ecological farming of oyster[J]. Journal of Aquaculture, 2020, 41(4): 1-3,7 (in Chinese).
    [19] 王强. 浅谈海水贝类养殖中的问题及对策[J]. 山西农经, 2021(4): 151-152.
    Wang Q. Discussion on problems and countermeasures in aquaculture of seawater shellfish[J]. Shanxi Agricultural Economy, 2021(4): 151-152 (in Chinese).
    [20] Wan Y, Bai Y, He J, et al. Temporal and spatial variations of aquatic environmental characteristics and sediment bacterial community in five regions of Lake Taihu[J]. Aquatic Ecology, 2017, 51(3): 343-358.
    [21] 李国, 闫茂仓, 常维山, 等. 我国海水养殖贝类弧菌病研究进展[J]. 浙江海洋学院学报(自然科学版), 2008, 27(03): 327-334.
    Li G, Yan M C , Chang W S, et al. Review on studing of Vibriosis of shellfish farming in China[J]. Journal of Zhejiang Ocean University (Natural Science Edition), 2008, 27(03): 327-334 (in Chinese).
    [22] Huptas C, Scherer S, Wenning M. Optimized Illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly[J]. BMC Research Notes, 2016, 9: 269.
    [23] Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
    [24] Bokulich N A, Subramanian S, Faith J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013, 10(1): 57-59.
    [25] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.
    [26] Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584.
    [27] Haas B J, Gevers D, Earl A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 2011, 21(3): 494-504.
    [28] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
    [29] Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1): D590-D596.
    [30] Preidis G A, Ajami N J, Wong M C, et al. Composition and function of the undernourished neonatal mouse intestinal microbiome[J]. The Journal of Nutritional Biochemistry, 2015, 26(10): 1050-1057.
    [31] 曾志南, 宁岳, 林向阳, 等. 福建牡蛎养殖业发展现状与对策[C]//中国动物学会、中国海洋湖沼学会贝类学会分会第十四次学会研讨会论文摘要汇编. 南昌: 中国动物学会, 2009.
    Zeng Z N, Ning Y, Lin X Y, et al. Development status and countermeasures of oyster culture in Fujian Province[C]// Abstracts of the 14th Symposium of the Chinese Society of Zoology and the Shellfish Society of the Chinese Society of Marine Limnology. Nanchang: Chinese Society of Zoology, 2009 (in Chinese).
    [32] 潘晓艺, 沈锦玉, 尹文林, 等. 水生动物的弧菌病及其致病机理[J]. 大连海洋大学学报, 2006, 21(3): 272-277.
    Pan X Y, Shen J Y, Yin W L, et al. Vibriosis and their mechanisms in aquatic animals[J]. Journal of Dalian Fisheries University, 2006, 21(3): 272-277 (in Chinese).
    [33] 董波, 相建海, 杨鸣, 等. 海水养殖生物病害发生和抗病力的基础研究[J]. 中国基础科学, 2003(6): 19-24.
    Dong B, Xiang J H, Yang M, et al. Research on the disease occurrence and disease resistance of the commercially important organisms in mariculture[J]. China Basic Science, 2003(6): 19-24 (in Chinese).
    [34] Trabal Fernández N, Mazón-Suástegui J M, Vázquez-Juárez R, et al. Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production[J]. FEMS Microbiology Ecology, 2014, 88(1): 69-83.
    [35] Chen H W. Diseases of cultured oysters caused by pathogenetic microbes[J]. Fisheries Science, 2007, 26(9): 531-534.
    [36] Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution[J]. FEMS Microbiology Reviews, 2008, 32(5): 723-735.
    [37] De Schryver P, Vadstein O. Ecological theory as a foundation to control pathogenic invasion in aquaculture[J]. The ISME Journal, 2014, 8(12): 2360-2368.
    [38] Beaz-Hidalgo R, Balboa S, Romalde J L, et al. Diversity and pathogenecity of Vibrio species in cultured bivalve molluscs[J]. Environmental Microbiology Reports, 2010, 2(1): 34-43.
    [39] Crapart S, Fardeau M L, Cayol J L, et al. Exiguobacterium profundum sp. nov. , a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(Pt 2): 287-292.
    [40] 石瑞雪, 李艳和. 克氏原螯虾微小杆菌Exiguobacterium profundum的分离鉴定与药敏试验[J]. 中国农学通报, 2023, 39(2): 123-129.
    Shi R X, Li Y H. Isolation, identification and antibiotics susceptibility test of Exiguobacterium profundum from Procambarus clarkii[J]. Chinese Agricultural Science Bulletin, 2023, 39(2): 123-129 (in Chinese).
    [41] Gadeberg O V, Orskov I, Rhodes J M. Cytotoxic effect of an alpha-hemolytic Escherichia coli strain on human blood monocytes and granulocytes in vitro[J]. Infection and Immunity, 1983, 41(1): 358-364.
    [42] Elston R, Leibovitz L, Relyea D, et al. Diagnosis of vibriosis in a commercial oyster hatchery epizootic: diagnostic tools and management features[J]. Aquaculture, 1981, 24: 53-62.
    [43] Valério E, Chaves S, Tenreiro R. Diversity and impact of prokaryotic toxins on aquatic environments: a review[J]. Toxins (Basel), 2010, 2(10): 2359-2410.
    [44] Allam B, Paillard C, Ford S E. Pathogenicity of Vibrio tapetis, the etiological agent of brown ring disease in clams[J]. Diseases of Aquatic Organisms, 2002, 48(3): 221-231.
    [45] 林雪洁, 高磊, 于子超, 等. 一株虾夷扇贝病原——科氏希瓦氏菌的分离鉴定及其致病性[J]. 大连海洋大学学报, 2022, 37(6): 933-940.
    Lin X J, Gao L, Yu Z C, et al. Isolation, identification and pathogenicity of Shewanella colwelliana, a pathogen of Yesso scallop Patinopecten yessoensis[J]. Journal of Dalian Ocean University, 2022, 37(6): 933-940 (in Chinese).
    [46] Antonelli G, Cutler S. Evolution of the Koch postulates: towards a 21st-century understanding of microbial infection[J]. Clinical Microbiology and Infection, 2016, 22(7): 583-584.
    [47] Li X, Yang B, Shi C Y, et al. Synergistic interaction of low salinity stress with Vibrio infection causes mass mortalities in the oyster by inducing host microflora imbalance and immune dysregulation[J]. Frontiers in Immunology, 2022, 13: 859975.
    [48] 马悦欣, 徐高蓉, 常亚青, 等. 大连地区刺参幼参溃烂病细菌性病原的初步研究[J]. 大连水产学院学报, 2006, 21(1): 13-18.
    Ma Y X, Xu G R, Chang Y Q, et al. Bacterial pathogens of skin ulceration disease in cultured sea cucumber Apostichopus japonicus (Selenka) juveniles[J]. Journal of Dalian Fisheries University, 2006, 21(1): 13-18 (in Chinese).
    [49] 马景雪, 张培玉, 王宗兴, 等. 黄岛近海岸贝类养殖区细菌群落结构多样性及与环境因子响应[J]. 水产学报, 2022, 46(6): 984-994.
    Ma J X, Zhang P Y, Wang Z X, et al. Bacterial community structure diversity and environmental factors in the coastal shellfish culture area of Huangdao[J]. Journal of Fisheries of China, 2022, 46(6): 984-994 (in Chinese).
    [50] 王玲玲. 贝类神经内分泌系统对免疫应答的调节机制[J]. 大连海洋大学学报, 2022, 37(3): 363-375.
    Wang L L. Regulatory mechanism of neuroendocrine system on immune response in molluscs: a review[J]. Journal of Dalian Ocean University, 2022, 37(3): 363-375 (in Chinese).
    [51] 孙洁洁, 宋林生. 贝类炎症及其发生机制研究进展[J]. 大连海洋大学学报, 2023, 38(3): 369-379.
    Sun J J, Song L S. Inflammation and its mechanism in molluscs: a review[J]. Journal of Dalian Ocean University, 2023, 38(3): 369-379 (in Chinese).
    [52] Song L S, Wang L L, Qiu L M, et al. Bivalve immunity[M]//Söderhäll K. Invertebrate immunity. Boston: Springer, 2010: 44-65.
    [53] Hoshino K, Takeuchi O, Kawai T, et al. Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product[J]. The Journal of Immunology, 1999, 162(7): 3749-3752.
    [54] 王秋金. 泥蚶抗弧菌免疫相关通路AP-1的鉴定和功能研究[D]. 上海: 上海海洋大学, 2023.
    Wang Q J. Identification and functional study of anti-Vibrio immune-related pathway AP-1 in Tegillarca granosa[J]. Shanghai: Shanghai Ocean University, 2023 (in Chinese).
    [55] 李晓鹏. 长牡蛎CgCaspase-1和CgCaspase-3对细胞焦亡和炎症的调控作用[D]. 大连: 大连海洋大学, 2023.
    Li X P. Regulation on cell pyroptosis and inflammation mediated by CgCaspase-1 and CgCaspase-3 in Pacific oyster Crassostrea gigas[D]. Dalian: Dalian Ocean University, 2023 (in Chinese).
    [56] 曹婉晴. CgIL17-1及其受体对长牡蛎血淋巴细胞增殖的调节作用[D]. 大连: 大连海洋大学, 2022.
    Cao W Q. The involvement of CgIL17-1 and its receptor on regulating the proliferation of haemocytes in Crassostrea gigas[D]. Dalian: Dalian Ocean University, 2022 (in Chinese).
    [57] Wang H X, Yue X, Yu J J, et al. Microbial community changes in the digestive tract of the clam Meretrix petechialis in response to Vibrio parahaemolyticus challenge[J]. Journal of Oceanology and Limnology, 2021, 39(1): 329-339.
    [58] 张艳. 山东近岸海域水体细菌多样性研究[D]. 青岛: 中国海洋大学, 2010.
    Zhang Y. Diversity of bacterial communities in coastal areas of Shandong Province[D]. Qingdao: Ocean University of China, 2010 (in Chinese).
    [59] Zhang T, Zhu H, Wang J, et al. Monitoring bacterial community dynamics in abalone (Haliotis discus hannai) and the correlations associated with aquatic diseases[J]. Water, 2022, 14(11): 1769.
    [60] 邓婕, 王秋水, 刘悦, 等. 北戴河水产养殖海域可培养微生物多样性及耐药性分析[J]. 分析仪器, 2023(1): 74-83.
    Deng J, Wang Q S, Liu Y, et al. Research on microbial diversity and antibiotic resistance of culturable bacteria in Beidaihe aquaculture area[J]. Analytical Instrumentation, 2023(1): 74-83 (in Chinese).
    [61] 曹荣, 张井, 孟辉辉, 等. 高通量测序与传统纯培养方法在牡蛎微生物群落分析中的应用对比[J]. 食品科学, 2016, 37(24): 137-141.
    Cao R, Zhang J, Meng H H, et al. Microbial flora analysis of oyster: a comparison between traditional plate culture method and high throughput sequencing[J]. Food Science, 2016, 37(24): 137-141 (in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜军,孙洁洁,杨文文,高磊,冷金源,王玲玲,宋林生.深海微小杆菌的分离鉴定及其对长牡蛎的致病性[J].水产学报,2025,49(1):019416

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-15
  • 最后修改日期:2024-07-17
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-01
文章二维码